## Uses of Classcern.colt.matrix.DoubleMatrix2D

• Packages that use DoubleMatrix2D
Package Description
cern.colt.matrix
Matrix interfaces and factories; efficient and flexible dense and sparse 1, 2, 3 and d-dimensional matrices holding objects or primitive data types such as int, double, etc; Templated, fixed sized (not dynamically resizable); Also known as multi-dimensional arrays or Data Cubes.
cern.colt.matrix.doublealgo
Double matrix algorithms such as print formatting, sorting, partitioning and statistics.
cern.colt.matrix.impl
Matrix implementations; You normally need not look at this package, because all concrete classes implement the abstract interfaces of `cern.colt.matrix`, without subsetting or supersetting.
cern.colt.matrix.linalg
Linear Algebraic matrix computations operating on `DoubleMatrix2D` and `DoubleMatrix1D`.
• ### Uses of DoubleMatrix2D in cern.colt.matrix

Methods in cern.colt.matrix that return DoubleMatrix2D
Modifier and Type Method and Description
`DoubleMatrix2D` DoubleFactory2D.```appendColumns(DoubleMatrix2D A, DoubleMatrix2D B)```
C = A||B; Constructs a new matrix which is the column-wise concatenation of two other matrices.
`DoubleMatrix2D` DoubleFactory2D.```appendRows(DoubleMatrix2D A, DoubleMatrix2D B)```
C = A||B; Constructs a new matrix which is the row-wise concatenation of two other matrices.
`DoubleMatrix2D` DoubleFactory2D.```ascending(int rows, int columns)```
Constructs a matrix with cells having ascending values.
`DoubleMatrix2D` DoubleMatrix2D.`assign(double value)`
Sets all cells to the state specified by value.
`DoubleMatrix2D` DoubleMatrix2D.`assign(double[][] values)`
Sets all cells to the state specified by values.
`DoubleMatrix2D` DoubleMatrix2D.`assign(DoubleFunction function)`
Assigns the result of a function to each cell; x[row,col] = function(x[row,col]).
`DoubleMatrix2D` DoubleMatrix2D.`assign(DoubleMatrix2D other)`
Replaces all cell values of the receiver with the values of another matrix.
`DoubleMatrix2D` DoubleMatrix2D.```assign(DoubleMatrix2D y, DoubleDoubleFunction function)```
Assigns the result of a function to each cell; x[row,col] = function(x[row,col],y[row,col]).
`DoubleMatrix2D` DoubleFactory2D.`compose(DoubleMatrix2D[][] parts)`
Constructs a block matrix made from the given parts.
`DoubleMatrix2D` DoubleFactory2D.```composeDiagonal(DoubleMatrix2D A, DoubleMatrix2D B)```
Constructs a diagonal block matrix from the given parts (the direct sum of two matrices).
`DoubleMatrix2D` DoubleFactory2D.```composeDiagonal(DoubleMatrix2D A, DoubleMatrix2D B, DoubleMatrix2D C)```
Constructs a diagonal block matrix from the given parts.
`DoubleMatrix2D` DoubleMatrix2D.`copy()`
Constructs and returns a deep copy of the receiver.
`DoubleMatrix2D` DoubleFactory2D.```descending(int rows, int columns)```
Constructs a matrix with cells having descending values.
`DoubleMatrix2D` DoubleFactory2D.`diagonal(DoubleMatrix1D vector)`
Constructs a new diagonal matrix whose diagonal elements are the elements of vector.
`DoubleMatrix2D` DoubleMatrix2D.`forEachNonZero(IntIntDoubleFunction function)`
Assigns the result of a function to each non-zero cell; x[row,col] = function(x[row,col]).
`protected DoubleMatrix2D` DoubleMatrix2D.`getContent()`
Returns the content of this matrix if it is a wrapper; or this otherwise.
`DoubleMatrix2D` DoubleFactory2D.`identity(int rowsAndColumns)`
Constructs an identity matrix (having ones on the diagonal and zeros elsewhere).
`DoubleMatrix2D` DoubleMatrix2D.`like()`
Construct and returns a new empty matrix of the same dynamic type as the receiver, having the same number of rows and columns.
`abstract DoubleMatrix2D` DoubleMatrix2D.```like(int rows, int columns)```
Construct and returns a new empty matrix of the same dynamic type as the receiver, having the specified number of rows and columns.
`abstract DoubleMatrix2D` DoubleMatrix1D.```like2D(int rows, int columns)```
Construct and returns a new 2-d matrix of the corresponding dynamic type, entirelly independent of the receiver.
`protected abstract DoubleMatrix2D` DoubleMatrix3D.```like2D(int rows, int columns, int rowZero, int columnZero, int rowStride, int columnStride)```
Construct and returns a new 2-d matrix of the corresponding dynamic type, sharing the same cells.
`DoubleMatrix2D` DoubleFactory2D.`make(double[][] values)`
Constructs a matrix with the given cell values.
`DoubleMatrix2D` DoubleFactory2D.```make(double[] values, int rows)```
Construct a matrix from a one-dimensional column-major packed array, ala Fortran.
`DoubleMatrix2D` DoubleFactory2D.```make(int rows, int columns)```
Constructs a matrix with the given shape, each cell initialized with zero.
`DoubleMatrix2D` DoubleFactory2D.```make(int rows, int columns, double initialValue)```
Constructs a matrix with the given shape, each cell initialized with the given value.
`DoubleMatrix2D` DoubleFactory2D.```random(int rows, int columns)```
Constructs a matrix with uniformly distributed values in (0,1) (exclusive).
`DoubleMatrix2D` DoubleFactory2D.```repeat(DoubleMatrix2D A, int rowRepeat, int columnRepeat)```
C = A||A||..||A; Constructs a new matrix which is duplicated both along the row and column dimension.
`DoubleMatrix2D` DoubleFactory2D.```sample(DoubleMatrix2D matrix, double value, double nonZeroFraction)```
Modifies the given matrix to be a randomly sampled matrix.
`DoubleMatrix2D` DoubleFactory2D.```sample(int rows, int columns, double value, double nonZeroFraction)```
Constructs a randomly sampled matrix with the given shape.
`protected DoubleMatrix2D` DoubleMatrix2D.`view()`
Constructs and returns a new view equal to the receiver.
`DoubleMatrix2D` DoubleMatrix3D.`viewColumn(int column)`
Constructs and returns a new 2-dimensional slice view representing the slices and rows of the given column.
`DoubleMatrix2D` DoubleMatrix2D.`viewColumnFlip()`
Constructs and returns a new flip view along the column axis.
`DoubleMatrix2D` DoubleMatrix2D.`viewDice()`
Constructs and returns a new dice (transposition) view; Swaps axes; example: 3 x 4 matrix --> 4 x 3 matrix.
`DoubleMatrix2D` DoubleMatrix2D.```viewPart(int row, int column, int height, int width)```
Constructs and returns a new sub-range view that is a height x width sub matrix starting at [row,column].
`DoubleMatrix2D` DoubleMatrix3D.`viewRow(int row)`
Constructs and returns a new 2-dimensional slice view representing the slices and columns of the given row.
`DoubleMatrix2D` DoubleMatrix2D.`viewRowFlip()`
Constructs and returns a new flip view along the row axis.
`DoubleMatrix2D` DoubleMatrix2D.`viewSelection(DoubleMatrix1DProcedure condition)`
Constructs and returns a new selection view that is a matrix holding all rows matching the given condition.
`DoubleMatrix2D` DoubleMatrix2D.```viewSelection(int[] rowIndexes, int[] columnIndexes)```
Constructs and returns a new selection view that is a matrix holding the indicated cells.
`protected abstract DoubleMatrix2D` DoubleMatrix2D.```viewSelectionLike(int[] rowOffsets, int[] columnOffsets)```
Construct and returns a new selection view.
`DoubleMatrix2D` DoubleMatrix3D.`viewSlice(int slice)`
Constructs and returns a new 2-dimensional slice view representing the rows and columns of the given slice.
`DoubleMatrix2D` DoubleMatrix2D.`viewSorted(int column)`
Sorts the matrix rows into ascending order, according to the natural ordering of the matrix values in the given column.
`DoubleMatrix2D` DoubleMatrix2D.```viewStrides(int rowStride, int columnStride)```
Constructs and returns a new stride view which is a sub matrix consisting of every i-th cell.
`DoubleMatrix2D` DoubleMatrix2D.```zMult(DoubleMatrix2D B, DoubleMatrix2D C)```
Linear algebraic matrix-matrix multiplication; C = A x B; Equivalent to A.zMult(B,C,1,0,false,false).
`DoubleMatrix2D` DoubleMatrix2D.```zMult(DoubleMatrix2D B, DoubleMatrix2D C, double alpha, double beta, boolean transposeA, boolean transposeB)```
Linear algebraic matrix-matrix multiplication; C = alpha * A x B + beta*C.
Methods in cern.colt.matrix with parameters of type DoubleMatrix2D
Modifier and Type Method and Description
`double` DoubleMatrix2D.```aggregate(DoubleMatrix2D other, DoubleDoubleFunction aggr, DoubleDoubleFunction f)```
Applies a function to each corresponding cell of two matrices and aggregates the results.
`DoubleMatrix2D` DoubleFactory2D.```appendColumns(DoubleMatrix2D A, DoubleMatrix2D B)```
C = A||B; Constructs a new matrix which is the column-wise concatenation of two other matrices.
`DoubleMatrix2D` DoubleFactory2D.```appendRows(DoubleMatrix2D A, DoubleMatrix2D B)```
C = A||B; Constructs a new matrix which is the row-wise concatenation of two other matrices.
`boolean` DoubleMatrix2DProcedure.`apply(DoubleMatrix2D element)`
Applies a procedure to an argument.
`DoubleMatrix2D` DoubleMatrix2D.`assign(DoubleMatrix2D other)`
Replaces all cell values of the receiver with the values of another matrix.
`DoubleMatrix2D` DoubleMatrix2D.```assign(DoubleMatrix2D y, DoubleDoubleFunction function)```
Assigns the result of a function to each cell; x[row,col] = function(x[row,col],y[row,col]).
`protected static void` DoubleFactory2D.`checkRectangularShape(DoubleMatrix2D[][] array)`
Checks whether the given array is rectangular, that is, whether all rows have the same number of columns.
`DoubleMatrix2D` DoubleFactory2D.`compose(DoubleMatrix2D[][] parts)`
Constructs a block matrix made from the given parts.
`DoubleMatrix2D` DoubleFactory2D.```composeDiagonal(DoubleMatrix2D A, DoubleMatrix2D B)```
Constructs a diagonal block matrix from the given parts (the direct sum of two matrices).
`DoubleMatrix2D` DoubleFactory2D.```composeDiagonal(DoubleMatrix2D A, DoubleMatrix2D B, DoubleMatrix2D C)```
Constructs a diagonal block matrix from the given parts.
`void` DoubleFactory2D.```decompose(DoubleMatrix2D[][] parts, DoubleMatrix2D matrix)```
Splits a block matrix into its constituent blocks; Copies blocks of a matrix into the given parts.
`void` DoubleFactory2D.```decompose(DoubleMatrix2D[][] parts, DoubleMatrix2D matrix)```
Splits a block matrix into its constituent blocks; Copies blocks of a matrix into the given parts.
`DoubleMatrix1D` DoubleFactory2D.`diagonal(DoubleMatrix2D A)`
Constructs a new vector consisting of the diagonal elements of A.
`protected boolean` DoubleMatrix2D.`haveSharedCells(DoubleMatrix2D other)`
Returns true if both matrices share at least one identical cell.
`protected boolean` DoubleMatrix2D.`haveSharedCellsRaw(DoubleMatrix2D other)`
Returns true if both matrices share at least one identical cell.
`DoubleMatrix2D` DoubleFactory2D.```repeat(DoubleMatrix2D A, int rowRepeat, int columnRepeat)```
C = A||A||..||A; Constructs a new matrix which is duplicated both along the row and column dimension.
`DoubleMatrix2D` DoubleFactory2D.```sample(DoubleMatrix2D matrix, double value, double nonZeroFraction)```
Modifies the given matrix to be a randomly sampled matrix.
`void` DoubleMatrix2D.```zAssign8Neighbors(DoubleMatrix2D B, Double9Function function)```
8 neighbor stencil transformation.
`DoubleMatrix2D` DoubleMatrix2D.```zMult(DoubleMatrix2D B, DoubleMatrix2D C)```
Linear algebraic matrix-matrix multiplication; C = A x B; Equivalent to A.zMult(B,C,1,0,false,false).
`DoubleMatrix2D` DoubleMatrix2D.```zMult(DoubleMatrix2D B, DoubleMatrix2D C, double alpha, double beta, boolean transposeA, boolean transposeB)```
Linear algebraic matrix-matrix multiplication; C = alpha * A x B + beta*C.
• ### Uses of DoubleMatrix2D in cern.colt.matrix.doublealgo

Methods in cern.colt.matrix.doublealgo that return DoubleMatrix2D
Modifier and Type Method and Description
`static DoubleMatrix2D` Transform.`abs(DoubleMatrix2D A)`
Deprecated.
A[row,col] = Math.abs(A[row,col]).
`static DoubleMatrix2D` Statistic.`correlation(DoubleMatrix2D covariance)`
Modifies the given covariance matrix to be a correlation matrix (in-place).
`static DoubleMatrix2D` Statistic.`covariance(DoubleMatrix2D matrix)`
Constructs and returns the covariance matrix of the given matrix.
`static DoubleMatrix2D` Statistic.```distance(DoubleMatrix2D matrix, Statistic.VectorVectorFunction distanceFunction)```
Constructs and returns the distance matrix of the given matrix.
`static DoubleMatrix2D` Transform.```div(DoubleMatrix2D A, double s)```
Deprecated.
A = A / s <=> A[row,col] = A[row,col] / s.
`static DoubleMatrix2D` Transform.```div(DoubleMatrix2D A, DoubleMatrix2D B)```
Deprecated.
A = A / B <=> A[row,col] = A[row,col] / B[row,col].
`static DoubleMatrix2D` Transform.```equals(DoubleMatrix2D A, double s)```
Deprecated.
A[row,col] = A[row,col] == s ? 1 : 0; ignores tolerance.
`static DoubleMatrix2D` Transform.```equals(DoubleMatrix2D A, DoubleMatrix2D B)```
Deprecated.
A[row,col] = A[row,col] == B[row,col] ? 1 : 0; ignores tolerance.
`static DoubleMatrix2D` Transform.```greater(DoubleMatrix2D A, double s)```
Deprecated.
A[row,col] = A[row,col] > s ? 1 : 0.
`static DoubleMatrix2D` Transform.```greater(DoubleMatrix2D A, DoubleMatrix2D B)```
Deprecated.
A[row,col] = A[row,col] > B[row,col] ? 1 : 0.
`static DoubleMatrix2D` Transform.```less(DoubleMatrix2D A, double s)```
Deprecated.
A[row,col] = A[row,col] < s ? 1 : 0.
`static DoubleMatrix2D` Transform.```less(DoubleMatrix2D A, DoubleMatrix2D B)```
Deprecated.
A[row,col] = A[row,col] < B[row,col] ? 1 : 0.
`static DoubleMatrix2D` Transform.```minus(DoubleMatrix2D A, double s)```
Deprecated.
A = A - s <=> A[row,col] = A[row,col] - s.
`static DoubleMatrix2D` Transform.```minus(DoubleMatrix2D A, DoubleMatrix2D B)```
Deprecated.
A = A - B <=> A[row,col] = A[row,col] - B[row,col].
`static DoubleMatrix2D` Transform.```minusMult(DoubleMatrix2D A, DoubleMatrix2D B, double s)```
Deprecated.
A = A - B*s <=> A[row,col] = A[row,col] - B[row,col]*s.
`static DoubleMatrix2D` Transform.```mult(DoubleMatrix2D A, double s)```
Deprecated.
A = A * s <=> A[row,col] = A[row,col] * s.
`static DoubleMatrix2D` Transform.```mult(DoubleMatrix2D A, DoubleMatrix2D B)```
Deprecated.
A = A * B <=> A[row,col] = A[row,col] * B[row,col].
`static DoubleMatrix2D` Transform.`negate(DoubleMatrix2D A)`
Deprecated.
A = -A <=> A[row,col] = -A[row,col].
`static DoubleMatrix2D` Partitioning.```partition(DoubleMatrix2D matrix, int column, double[] splitters, int[] splitIndexes)```
Same as `Partitioning.partition(int[],int,int,int[],int,int,int[])` except that it synchronously partitions the rows of the given matrix by the values of the given matrix column; This is essentially the same as partitioning a list of composite objects by some instance variable; In other words, two entire rows of the matrix are swapped, whenever two column values indicate so.
`static DoubleMatrix2D` Transform.```plus(DoubleMatrix2D A, double s)```
Deprecated.
A = A + s <=> A[row,col] = A[row,col] + s.
`static DoubleMatrix2D` Transform.```plus(DoubleMatrix2D A, DoubleMatrix2D B)```
Deprecated.
A = A + B <=> A[row,col] = A[row,col] + B[row,col].
`static DoubleMatrix2D` Transform.```plusMult(DoubleMatrix2D A, DoubleMatrix2D B, double s)```
Deprecated.
A = A + B*s <=> A[row,col] = A[row,col] + B[row,col]*s.
`static DoubleMatrix2D` Transform.```pow(DoubleMatrix2D A, double s)```
Deprecated.
A = As <=> A[row,col] = Math.pow(A[row,col], s).
`static DoubleMatrix2D` Transform.```pow(DoubleMatrix2D A, DoubleMatrix2D B)```
Deprecated.
A = AB <=> A[row,col] = Math.pow(A[row,col], B[row,col]).
`DoubleMatrix2D` Sorting.```sort(DoubleMatrix2D matrix, double[] aggregates)```
Sorts the matrix rows into ascending order, according to the natural ordering of the matrix values in the virtual column aggregates; Particularly efficient when comparing expensive aggregates, because aggregates need not be recomputed time and again, as is the case for comparator based sorts.
`DoubleMatrix2D` Sorting.```sort(DoubleMatrix2D matrix, DoubleMatrix1DComparator c)```
Sorts the matrix rows according to the order induced by the specified comparator.
`DoubleMatrix2D` Sorting.```sort(DoubleMatrix2D matrix, int column)```
Sorts the matrix rows into ascending order, according to the natural ordering of the matrix values in the given column.
`static DoubleMatrix2D` Statistic.```viewSample(DoubleMatrix2D matrix, double rowFraction, double columnFraction, RandomEngine randomGenerator)```
Constructs and returns a sampling view with round(matrix.rows() * rowFraction) rows and round(matrix.columns() * columnFraction) columns.
Methods in cern.colt.matrix.doublealgo with parameters of type DoubleMatrix2D
Modifier and Type Method and Description
`static DoubleMatrix2D` Transform.`abs(DoubleMatrix2D A)`
Deprecated.
A[row,col] = Math.abs(A[row,col]).
`int` DoubleMatrix2DComparator.```compare(DoubleMatrix2D o1, DoubleMatrix2D o2)```
Compares its two arguments for order.
`static DoubleMatrix2D` Statistic.`correlation(DoubleMatrix2D covariance)`
Modifies the given covariance matrix to be a correlation matrix (in-place).
`static DoubleMatrix2D` Statistic.`covariance(DoubleMatrix2D matrix)`
Constructs and returns the covariance matrix of the given matrix.
`static DoubleMatrix2D` Statistic.```distance(DoubleMatrix2D matrix, Statistic.VectorVectorFunction distanceFunction)```
Constructs and returns the distance matrix of the given matrix.
`static DoubleMatrix2D` Transform.```div(DoubleMatrix2D A, double s)```
Deprecated.
A = A / s <=> A[row,col] = A[row,col] / s.
`static DoubleMatrix2D` Transform.```div(DoubleMatrix2D A, DoubleMatrix2D B)```
Deprecated.
A = A / B <=> A[row,col] = A[row,col] / B[row,col].
`static DoubleMatrix2D` Transform.```equals(DoubleMatrix2D A, double s)```
Deprecated.
A[row,col] = A[row,col] == s ? 1 : 0; ignores tolerance.
`static DoubleMatrix2D` Transform.```equals(DoubleMatrix2D A, DoubleMatrix2D B)```
Deprecated.
A[row,col] = A[row,col] == B[row,col] ? 1 : 0; ignores tolerance.
`String[][]` Formatter.`format(DoubleMatrix2D matrix)`
Returns a string representations of all cells; no alignment considered.
`static DoubleMatrix2D` Transform.```greater(DoubleMatrix2D A, double s)```
Deprecated.
A[row,col] = A[row,col] > s ? 1 : 0.
`static DoubleMatrix2D` Transform.```greater(DoubleMatrix2D A, DoubleMatrix2D B)```
Deprecated.
A[row,col] = A[row,col] > B[row,col] ? 1 : 0.
`static DoubleMatrix2D` Transform.```less(DoubleMatrix2D A, double s)```
Deprecated.
A[row,col] = A[row,col] < s ? 1 : 0.
`static DoubleMatrix2D` Transform.```less(DoubleMatrix2D A, DoubleMatrix2D B)```
Deprecated.
A[row,col] = A[row,col] < B[row,col] ? 1 : 0.
`static DoubleMatrix2D` Transform.```minus(DoubleMatrix2D A, double s)```
Deprecated.
A = A - s <=> A[row,col] = A[row,col] - s.
`static DoubleMatrix2D` Transform.```minus(DoubleMatrix2D A, DoubleMatrix2D B)```
Deprecated.
A = A - B <=> A[row,col] = A[row,col] - B[row,col].
`static DoubleMatrix2D` Transform.```minusMult(DoubleMatrix2D A, DoubleMatrix2D B, double s)```
Deprecated.
A = A - B*s <=> A[row,col] = A[row,col] - B[row,col]*s.
`static DoubleMatrix2D` Transform.```mult(DoubleMatrix2D A, double s)```
Deprecated.
A = A * s <=> A[row,col] = A[row,col] * s.
`static DoubleMatrix2D` Transform.```mult(DoubleMatrix2D A, DoubleMatrix2D B)```
Deprecated.
A = A * B <=> A[row,col] = A[row,col] * B[row,col].
`static DoubleMatrix2D` Transform.`negate(DoubleMatrix2D A)`
Deprecated.
A = -A <=> A[row,col] = -A[row,col].
`static void` Partitioning.```partition(DoubleMatrix2D matrix, int[] rowIndexes, int rowFrom, int rowTo, int column, double[] splitters, int splitFrom, int splitTo, int[] splitIndexes)```
Same as `Partitioning.partition(int[],int,int,int[],int,int,int[])` except that it synchronously partitions the rows of the given matrix by the values of the given matrix column; This is essentially the same as partitioning a list of composite objects by some instance variable; In other words, two entire rows of the matrix are swapped, whenever two column values indicate so.
`static DoubleMatrix2D` Partitioning.```partition(DoubleMatrix2D matrix, int column, double[] splitters, int[] splitIndexes)```
Same as `Partitioning.partition(int[],int,int,int[],int,int,int[])` except that it synchronously partitions the rows of the given matrix by the values of the given matrix column; This is essentially the same as partitioning a list of composite objects by some instance variable; In other words, two entire rows of the matrix are swapped, whenever two column values indicate so.
`static DoubleMatrix2D` Transform.```plus(DoubleMatrix2D A, double s)```
Deprecated.
A = A + s <=> A[row,col] = A[row,col] + s.
`static DoubleMatrix2D` Transform.```plus(DoubleMatrix2D A, DoubleMatrix2D B)```
Deprecated.
A = A + B <=> A[row,col] = A[row,col] + B[row,col].
`static DoubleMatrix2D` Transform.```plusMult(DoubleMatrix2D A, DoubleMatrix2D B, double s)```
Deprecated.
A = A + B*s <=> A[row,col] = A[row,col] + B[row,col]*s.
`static DoubleMatrix2D` Transform.```pow(DoubleMatrix2D A, double s)```
Deprecated.
A = As <=> A[row,col] = Math.pow(A[row,col], s).
`static DoubleMatrix2D` Transform.```pow(DoubleMatrix2D A, DoubleMatrix2D B)```
Deprecated.
A = AB <=> A[row,col] = Math.pow(A[row,col], B[row,col]).
`DoubleMatrix2D` Sorting.```sort(DoubleMatrix2D matrix, double[] aggregates)```
Sorts the matrix rows into ascending order, according to the natural ordering of the matrix values in the virtual column aggregates; Particularly efficient when comparing expensive aggregates, because aggregates need not be recomputed time and again, as is the case for comparator based sorts.
`DoubleMatrix2D` Sorting.```sort(DoubleMatrix2D matrix, DoubleMatrix1DComparator c)```
Sorts the matrix rows according to the order induced by the specified comparator.
`DoubleMatrix2D` Sorting.```sort(DoubleMatrix2D matrix, int column)```
Sorts the matrix rows into ascending order, according to the natural ordering of the matrix values in the given column.
`static int` Stencil.```stencil9(DoubleMatrix2D A, Double9Function function, int maxIterations, DoubleMatrix2DProcedure hasConverged, int convergenceIterations)```
9 point stencil operation.
`String` Formatter.`toSourceCode(DoubleMatrix2D matrix)`
Returns a string s such that Object[] m = s is a legal Java statement.
`String` Formatter.`toString(DoubleMatrix2D matrix)`
Returns a string representation of the given matrix.
`protected String` Formatter.```toTitleString(DoubleMatrix2D matrix, String[] rowNames, String[] columnNames, String rowAxisName, String columnAxisName, String title)```
Returns a string representation of the given matrix with axis as well as rows and columns labeled.
`static DoubleMatrix2D` Statistic.```viewSample(DoubleMatrix2D matrix, double rowFraction, double columnFraction, RandomEngine randomGenerator)```
Constructs and returns a sampling view with round(matrix.rows() * rowFraction) rows and round(matrix.columns() * columnFraction) columns.
• ### Uses of DoubleMatrix2D in cern.colt.matrix.impl

Subclasses of DoubleMatrix2D in cern.colt.matrix.impl
Modifier and Type Class and Description
`class ` `DenseDoubleMatrix2D`
Dense 2-d matrix holding double elements.
`class ` `RCDoubleMatrix2D`
Sparse row-compressed 2-d matrix holding double elements.
`class ` `SparseDoubleMatrix2D`
Sparse hashed 2-d matrix holding double elements.
Methods in cern.colt.matrix.impl that return DoubleMatrix2D
Modifier and Type Method and Description
`DoubleMatrix2D` DenseDoubleMatrix2D.`assign(double value)`
Sets all cells to the state specified by value.
`DoubleMatrix2D` RCDoubleMatrix2D.`assign(double value)`
Sets all cells to the state specified by value.
`DoubleMatrix2D` SparseDoubleMatrix2D.`assign(double value)`
Sets all cells to the state specified by value.
`DoubleMatrix2D` DenseDoubleMatrix2D.`assign(double[][] values)`
Sets all cells to the state specified by values.
`DoubleMatrix2D` DenseDoubleMatrix2D.`assign(DoubleFunction function)`
Assigns the result of a function to each cell; x[row,col] = function(x[row,col]).
`DoubleMatrix2D` RCDoubleMatrix2D.`assign(DoubleFunction function)`
`DoubleMatrix2D` SparseDoubleMatrix2D.`assign(DoubleFunction function)`
Assigns the result of a function to each cell; x[row,col] = function(x[row,col]).
`DoubleMatrix2D` DenseDoubleMatrix2D.`assign(DoubleMatrix2D source)`
Replaces all cell values of the receiver with the values of another matrix.
`DoubleMatrix2D` RCDoubleMatrix2D.`assign(DoubleMatrix2D source)`
Replaces all cell values of the receiver with the values of another matrix.
`DoubleMatrix2D` SparseDoubleMatrix2D.`assign(DoubleMatrix2D source)`
Replaces all cell values of the receiver with the values of another matrix.
`DoubleMatrix2D` DenseDoubleMatrix2D.```assign(DoubleMatrix2D y, DoubleDoubleFunction function)```
Assigns the result of a function to each cell; x[row,col] = function(x[row,col],y[row,col]).
`DoubleMatrix2D` RCDoubleMatrix2D.```assign(DoubleMatrix2D y, DoubleDoubleFunction function)```
`DoubleMatrix2D` SparseDoubleMatrix2D.```assign(DoubleMatrix2D y, DoubleDoubleFunction function)```
`DoubleMatrix2D` RCDoubleMatrix2D.`forEachNonZero(IntIntDoubleFunction function)`
`DoubleMatrix2D` SparseDoubleMatrix2D.`forEachNonZero(IntIntDoubleFunction function)`
`protected DoubleMatrix2D` RCDoubleMatrix2D.`getContent()`
Returns the content of this matrix if it is a wrapper; or this otherwise.
`DoubleMatrix2D` DenseDoubleMatrix2D.```like(int rows, int columns)```
Construct and returns a new empty matrix of the same dynamic type as the receiver, having the specified number of rows and columns.
`DoubleMatrix2D` RCDoubleMatrix2D.```like(int rows, int columns)```
Construct and returns a new empty matrix of the same dynamic type as the receiver, having the specified number of rows and columns.
`DoubleMatrix2D` SparseDoubleMatrix2D.```like(int rows, int columns)```
Construct and returns a new empty matrix of the same dynamic type as the receiver, having the specified number of rows and columns.
`DoubleMatrix2D` DenseDoubleMatrix1D.```like2D(int rows, int columns)```
Construct and returns a new 2-d matrix of the corresponding dynamic type, entirelly independent of the receiver.
`DoubleMatrix2D` SparseDoubleMatrix1D.```like2D(int rows, int columns)```
Construct and returns a new 2-d matrix of the corresponding dynamic type, entirelly independent of the receiver.
`protected DoubleMatrix2D` DenseDoubleMatrix3D.```like2D(int rows, int columns, int rowZero, int columnZero, int rowStride, int columnStride)```
Construct and returns a new 2-d matrix of the corresponding dynamic type, sharing the same cells.
`protected DoubleMatrix2D` SparseDoubleMatrix3D.```like2D(int rows, int columns, int rowZero, int columnZero, int rowStride, int columnStride)```
Construct and returns a new 2-d matrix of the corresponding dynamic type, sharing the same cells.
`protected DoubleMatrix2D` DenseDoubleMatrix2D.```viewSelectionLike(int[] rowOffsets, int[] columnOffsets)```
Construct and returns a new selection view.
`protected DoubleMatrix2D` SparseDoubleMatrix2D.```viewSelectionLike(int[] rowOffsets, int[] columnOffsets)```
Construct and returns a new selection view.
`DoubleMatrix2D` DenseDoubleMatrix2D.```zMult(DoubleMatrix2D B, DoubleMatrix2D C, double alpha, double beta, boolean transposeA, boolean transposeB)```
`DoubleMatrix2D` RCDoubleMatrix2D.```zMult(DoubleMatrix2D B, DoubleMatrix2D C, double alpha, double beta, boolean transposeA, boolean transposeB)```
`DoubleMatrix2D` SparseDoubleMatrix2D.```zMult(DoubleMatrix2D B, DoubleMatrix2D C, double alpha, double beta, boolean transposeA, boolean transposeB)```
Methods in cern.colt.matrix.impl with parameters of type DoubleMatrix2D
Modifier and Type Method and Description
`DoubleMatrix2D` DenseDoubleMatrix2D.`assign(DoubleMatrix2D source)`
Replaces all cell values of the receiver with the values of another matrix.
`DoubleMatrix2D` RCDoubleMatrix2D.`assign(DoubleMatrix2D source)`
Replaces all cell values of the receiver with the values of another matrix.
`DoubleMatrix2D` SparseDoubleMatrix2D.`assign(DoubleMatrix2D source)`
Replaces all cell values of the receiver with the values of another matrix.
`DoubleMatrix2D` DenseDoubleMatrix2D.```assign(DoubleMatrix2D y, DoubleDoubleFunction function)```
Assigns the result of a function to each cell; x[row,col] = function(x[row,col],y[row,col]).
`DoubleMatrix2D` RCDoubleMatrix2D.```assign(DoubleMatrix2D y, DoubleDoubleFunction function)```
`DoubleMatrix2D` SparseDoubleMatrix2D.```assign(DoubleMatrix2D y, DoubleDoubleFunction function)```
`protected boolean` DenseDoubleMatrix2D.`haveSharedCellsRaw(DoubleMatrix2D other)`
Returns true if both matrices share common cells.
`protected boolean` SparseDoubleMatrix2D.`haveSharedCellsRaw(DoubleMatrix2D other)`
Returns true if both matrices share common cells.
`void` DenseDoubleMatrix2D.```zAssign8Neighbors(DoubleMatrix2D B, Double9Function function)```
8 neighbor stencil transformation.
`DoubleMatrix2D` DenseDoubleMatrix2D.```zMult(DoubleMatrix2D B, DoubleMatrix2D C, double alpha, double beta, boolean transposeA, boolean transposeB)```
`DoubleMatrix2D` RCDoubleMatrix2D.```zMult(DoubleMatrix2D B, DoubleMatrix2D C, double alpha, double beta, boolean transposeA, boolean transposeB)```
`DoubleMatrix2D` SparseDoubleMatrix2D.```zMult(DoubleMatrix2D B, DoubleMatrix2D C, double alpha, double beta, boolean transposeA, boolean transposeB)```
• ### Uses of DoubleMatrix2D in cern.colt.matrix.linalg

Fields in cern.colt.matrix.linalg declared as DoubleMatrix2D
Modifier and Type Field and Description
`protected DoubleMatrix2D` LUDecompositionQuick.`LU`
Array for internal storage of decomposition.
Methods in cern.colt.matrix.linalg that return DoubleMatrix2D
Modifier and Type Method and Description
`DoubleMatrix2D` EigenvalueDecomposition.`getD()`
Returns the block diagonal eigenvalue matrix, D.
`DoubleMatrix2D` QRDecomposition.`getH()`
Returns the Householder vectors H.
`DoubleMatrix2D` CholeskyDecomposition.`getL()`
Returns the triangular factor, L.
`DoubleMatrix2D` LUDecompositionQuick.`getL()`
Returns the lower triangular factor, L.
`DoubleMatrix2D` LUDecomposition.`getL()`
Returns the lower triangular factor, L.
`DoubleMatrix2D` LUDecompositionQuick.`getLU()`
Returns a copy of the combined lower and upper triangular factor, LU.
`DoubleMatrix2D` QRDecomposition.`getQ()`
Generates and returns the (economy-sized) orthogonal factor Q.
`DoubleMatrix2D` QRDecomposition.`getR()`
Returns the upper triangular factor, R.
`DoubleMatrix2D` SingularValueDecomposition.`getS()`
Returns the diagonal matrix of singular values.
`DoubleMatrix2D` LUDecompositionQuick.`getU()`
Returns the upper triangular factor, U.
`DoubleMatrix2D` LUDecomposition.`getU()`
Returns the upper triangular factor, U.
`DoubleMatrix2D` SingularValueDecomposition.`getU()`
Returns the left singular vectors U.
`DoubleMatrix2D` EigenvalueDecomposition.`getV()`
Returns the eigenvector matrix, V
`DoubleMatrix2D` SingularValueDecomposition.`getV()`
Returns the right singular vectors V.
`DoubleMatrix2D` Algebra.`inverse(DoubleMatrix2D A)`
Returns the inverse or pseudo-inverse of matrix A.
`protected DoubleMatrix2D` LUDecompositionQuick.`lowerTriangular(DoubleMatrix2D A)`
Modifies the matrix to be a lower triangular matrix.
`DoubleMatrix2D` Algebra.```mult(DoubleMatrix2D A, DoubleMatrix2D B)```
Linear algebraic matrix-matrix multiplication; C = A x B.
`DoubleMatrix2D` Algebra.```multOuter(DoubleMatrix1D x, DoubleMatrix1D y, DoubleMatrix2D A)```
Outer product of two vectors; Sets A[i,j] = x[i] * y[j].
`DoubleMatrix2D` Algebra.```permute(DoubleMatrix2D A, int[] rowIndexes, int[] columnIndexes)```
Constructs and returns a new row and column permuted selection view of matrix A; equivalent to `viewSelection(int[],int[])`.
`DoubleMatrix2D` Algebra.```permuteColumns(DoubleMatrix2D A, int[] indexes, int[] work)```
Modifies the given matrix A such that it's columns are permuted as specified; Useful for pivoting.
`DoubleMatrix2D` Algebra.```permuteRows(DoubleMatrix2D A, int[] indexes, int[] work)```
Modifies the given matrix A such that it's rows are permuted as specified; Useful for pivoting.
`DoubleMatrix2D` Algebra.```pow(DoubleMatrix2D A, int p)```
Linear algebraic matrix power; B = Ak <==> B = A*A*...*A.
`DoubleMatrix2D` CholeskyDecomposition.`solve(DoubleMatrix2D B)`
Solves A*X = B; returns X.
`DoubleMatrix2D` QRDecomposition.`solve(DoubleMatrix2D B)`
Least squares solution of A*X = B; returns X.
`DoubleMatrix2D` LUDecomposition.`solve(DoubleMatrix2D B)`
Solves A*X = B.
`DoubleMatrix2D` Algebra.```solve(DoubleMatrix2D A, DoubleMatrix2D B)```
Solves A*X = B.
`DoubleMatrix2D` Algebra.```solveTranspose(DoubleMatrix2D A, DoubleMatrix2D B)```
Solves X*A = B, which is also A'*X' = B'.
`DoubleMatrix2D` Algebra.```subMatrix(DoubleMatrix2D A, int fromRow, int toRow, int fromColumn, int toColumn)```
Constructs and returns a new sub-range view which is the sub matrix A[fromRow..toRow,fromColumn..toColumn].
`DoubleMatrix2D` Algebra.`transpose(DoubleMatrix2D A)`
Constructs and returns a new view which is the transposition of the given matrix A.
`protected DoubleMatrix2D` Algebra.`trapezoidalLower(DoubleMatrix2D A)`
Modifies the matrix to be a lower trapezoidal matrix.
`protected DoubleMatrix2D` LUDecompositionQuick.`upperTriangular(DoubleMatrix2D A)`
Modifies the matrix to be an upper triangular matrix.
Methods in cern.colt.matrix.linalg with parameters of type DoubleMatrix2D
Modifier and Type Method and Description
`double` Matrix2DMatrix2DFunction.```apply(DoubleMatrix2D x, DoubleMatrix2D y)```
Applies a function to two arguments.
`void` Blas.```assign(DoubleMatrix2D A, DoubleFunction function)```
Assigns the result of a function to each cell; x[row,col] = function(x[row,col]).
`void` SeqBlas.```assign(DoubleMatrix2D A, DoubleFunction function)```
`void` SmpBlas.```assign(DoubleMatrix2D A, DoubleFunction function)```
`void` Blas.```assign(DoubleMatrix2D x, DoubleMatrix2D y, DoubleDoubleFunction function)```
Assigns the result of a function to each cell; x[row,col] = function(x[row,col],y[row,col]).
`void` SeqBlas.```assign(DoubleMatrix2D A, DoubleMatrix2D B, DoubleDoubleFunction function)```
`void` SmpBlas.```assign(DoubleMatrix2D A, DoubleMatrix2D B, DoubleDoubleFunction function)```
`void` Property.`checkRectangular(DoubleMatrix2D A)`
Checks whether the given matrix A is rectangular.
`void` Property.`checkSquare(DoubleMatrix2D A)`
Checks whether the given matrix A is square.
`double` Algebra.`cond(DoubleMatrix2D A)`
Returns the condition of matrix A, which is the ratio of largest to smallest singular value.
`void` Blas.```daxpy(double alpha, DoubleMatrix2D A, DoubleMatrix2D B)```
Combined matrix scaling; B = B + alpha*A.
`void` SeqBlas.```daxpy(double alpha, DoubleMatrix2D A, DoubleMatrix2D B)```
`void` SmpBlas.```daxpy(double alpha, DoubleMatrix2D A, DoubleMatrix2D B)```
`void` Blas.```dcopy(DoubleMatrix2D A, DoubleMatrix2D B)```
Matrix assignment (copying); B = A.
`void` SeqBlas.```dcopy(DoubleMatrix2D A, DoubleMatrix2D B)```
`void` SmpBlas.```dcopy(DoubleMatrix2D A, DoubleMatrix2D B)```
`void` LUDecompositionQuick.`decompose(DoubleMatrix2D A)`
Decomposes matrix A into L and U (in-place).
`void` LUDecompositionQuick.```decompose(DoubleMatrix2D A, int semiBandwidth)```
Decomposes the banded and square matrix A into L and U (in-place).
`double` Property.`density(DoubleMatrix2D A)`
Returns the matrix's fraction of non-zero cells; A.cardinality() / A.size().
`double` Algebra.`det(DoubleMatrix2D A)`
Returns the determinant of matrix A.
`void` Blas.```dgemm(boolean transposeA, boolean transposeB, double alpha, DoubleMatrix2D A, DoubleMatrix2D B, double beta, DoubleMatrix2D C)```
Generalized linear algebraic matrix-matrix multiply; C = alpha*A*B + beta*C.
`void` SeqBlas.```dgemm(boolean transposeA, boolean transposeB, double alpha, DoubleMatrix2D A, DoubleMatrix2D B, double beta, DoubleMatrix2D C)```
`void` SmpBlas.```dgemm(boolean transposeA, boolean transposeB, double alpha, DoubleMatrix2D A, DoubleMatrix2D B, double beta, DoubleMatrix2D C)```
`void` Blas.```dgemv(boolean transposeA, double alpha, DoubleMatrix2D A, DoubleMatrix1D x, double beta, DoubleMatrix1D y)```
Generalized linear algebraic matrix-vector multiply; y = alpha*A*x + beta*y.
`void` SeqBlas.```dgemv(boolean transposeA, double alpha, DoubleMatrix2D A, DoubleMatrix1D x, double beta, DoubleMatrix1D y)```
`void` SmpBlas.```dgemv(boolean transposeA, double alpha, DoubleMatrix2D A, DoubleMatrix1D x, double beta, DoubleMatrix1D y)```
`void` Blas.```dger(double alpha, DoubleMatrix1D x, DoubleMatrix1D y, DoubleMatrix2D A)```
Performs a rank 1 update; A = A + alpha*x*y'.
`void` SeqBlas.```dger(double alpha, DoubleMatrix1D x, DoubleMatrix1D y, DoubleMatrix2D A)```
`void` SmpBlas.```dger(double alpha, DoubleMatrix1D x, DoubleMatrix1D y, DoubleMatrix2D A)```
`void` Blas.```dscal(double alpha, DoubleMatrix2D A)```
Matrix scaling; A = alpha*A.
`void` SeqBlas.```dscal(double alpha, DoubleMatrix2D A)```
`void` SmpBlas.```dscal(double alpha, DoubleMatrix2D A)```
`void` Blas.```dswap(DoubleMatrix2D x, DoubleMatrix2D y)```
Swaps the elements of two matrices; B <==> A.
`void` SeqBlas.```dswap(DoubleMatrix2D A, DoubleMatrix2D B)```
`void` SmpBlas.```dswap(DoubleMatrix2D A, DoubleMatrix2D B)```
`void` Blas.```dsymv(boolean isUpperTriangular, double alpha, DoubleMatrix2D A, DoubleMatrix1D x, double beta, DoubleMatrix1D y)```
Symmetric matrix-vector multiplication; y = alpha*A*x + beta*y.
`void` SeqBlas.```dsymv(boolean isUpperTriangular, double alpha, DoubleMatrix2D A, DoubleMatrix1D x, double beta, DoubleMatrix1D y)```
`void` SmpBlas.```dsymv(boolean isUpperTriangular, double alpha, DoubleMatrix2D A, DoubleMatrix1D x, double beta, DoubleMatrix1D y)```
`void` Blas.```dtrmv(boolean isUpperTriangular, boolean transposeA, boolean isUnitTriangular, DoubleMatrix2D A, DoubleMatrix1D x)```
Triangular matrix-vector multiplication; x = A*x or x = A'*x.
`void` SeqBlas.```dtrmv(boolean isUpperTriangular, boolean transposeA, boolean isUnitTriangular, DoubleMatrix2D A, DoubleMatrix1D x)```
`void` SmpBlas.```dtrmv(boolean isUpperTriangular, boolean transposeA, boolean isUnitTriangular, DoubleMatrix2D A, DoubleMatrix1D x)```
`boolean` Property.```equals(DoubleMatrix2D A, double value)```
Returns whether all cells of the given matrix A are equal to the given value.
`boolean` Property.```equals(DoubleMatrix2D A, DoubleMatrix2D B)```
Returns whether both given matrices A and B are equal.
`void` Property.`generateNonSingular(DoubleMatrix2D A)`
Modifies the given matrix square matrix A such that it is diagonally dominant by row and column, hence non-singular, hence invertible.
`DoubleMatrix2D` Algebra.`inverse(DoubleMatrix2D A)`
Returns the inverse or pseudo-inverse of matrix A.
`boolean` Property.`isDiagonal(DoubleMatrix2D A)`
A matrix A is diagonal if A[i,j] == 0 whenever i != j.
`boolean` Property.`isDiagonallyDominantByColumn(DoubleMatrix2D A)`
A matrix A is diagonally dominant by column if the absolute value of each diagonal element is larger than the sum of the absolute values of the off-diagonal elements in the corresponding column.
`boolean` Property.`isDiagonallyDominantByRow(DoubleMatrix2D A)`
A matrix A is diagonally dominant by row if the absolute value of each diagonal element is larger than the sum of the absolute values of the off-diagonal elements in the corresponding row.
`boolean` Property.`isIdentity(DoubleMatrix2D A)`
A matrix A is an identity matrix if A[i,i] == 1 and all other cells are zero.
`boolean` Property.`isLowerBidiagonal(DoubleMatrix2D A)`
A matrix A is lower bidiagonal if A[i,j]==0 unless i==j || i==j+1.
`boolean` Property.`isLowerTriangular(DoubleMatrix2D A)`
A matrix A is lower triangular if A[i,j]==0 whenever i < j.
`boolean` Property.`isNonNegative(DoubleMatrix2D A)`
A matrix A is non-negative if A[i,j] >= 0 holds for all cells.
`protected boolean` LUDecompositionQuick.`isNonsingular(DoubleMatrix2D matrix)`
Returns whether the matrix is nonsingular.
`boolean` Property.`isOrthogonal(DoubleMatrix2D A)`
A square matrix A is orthogonal if A*transpose(A) = I.
`boolean` Property.`isPositive(DoubleMatrix2D A)`
A matrix A is positive if A[i,j] > 0 holds for all cells.
`boolean` Property.`isSingular(DoubleMatrix2D A)`
A matrix A is singular if it has no inverse, that is, iff det(A)==0.
`boolean` Property.`isSkewSymmetric(DoubleMatrix2D A)`
A square matrix A is skew-symmetric if A = -transpose(A), that is A[i,j] == -A[j,i].
`boolean` Property.`isSquare(DoubleMatrix2D A)`
A matrix A is square if it has the same number of rows and columns.
`boolean` Property.`isStrictlyLowerTriangular(DoubleMatrix2D A)`
A matrix A is strictly lower triangular if A[i,j]==0 whenever i <= j.
`boolean` Property.`isStrictlyTriangular(DoubleMatrix2D A)`
A matrix A is strictly triangular if it is triangular and its diagonal elements all equal 0.
`boolean` Property.`isStrictlyUpperTriangular(DoubleMatrix2D A)`
A matrix A is strictly upper triangular if A[i,j]==0 whenever i >= j.
`boolean` Property.`isSymmetric(DoubleMatrix2D A)`
A matrix A is symmetric if A = tranpose(A), that is A[i,j] == A[j,i].
`boolean` Property.`isTriangular(DoubleMatrix2D A)`
A matrix A is triangular iff it is either upper or lower triangular.
`boolean` Property.`isTridiagonal(DoubleMatrix2D A)`
A matrix A is tridiagonal if A[i,j]==0 whenever Math.abs(i-j) > 1.
`boolean` Property.`isUnitTriangular(DoubleMatrix2D A)`
A matrix A is unit triangular if it is triangular and its diagonal elements all equal 1.
`boolean` Property.`isUpperBidiagonal(DoubleMatrix2D A)`
A matrix A is upper bidiagonal if A[i,j]==0 unless i==j || i==j-1.
`boolean` Property.`isUpperTriangular(DoubleMatrix2D A)`
A matrix A is upper triangular if A[i,j]==0 whenever i > j.
`boolean` Property.`isZero(DoubleMatrix2D A)`
A matrix A is zero if all its cells are zero.
`int` Property.`lowerBandwidth(DoubleMatrix2D A)`
The lower bandwidth of a square matrix A is the maximum i-j for which A[i,j] is nonzero and i > j.
`protected DoubleMatrix2D` LUDecompositionQuick.`lowerTriangular(DoubleMatrix2D A)`
Modifies the matrix to be a lower triangular matrix.
`DoubleMatrix1D` Algebra.```mult(DoubleMatrix2D A, DoubleMatrix1D y)```
Linear algebraic matrix-vector multiplication; z = A * y.
`DoubleMatrix2D` Algebra.```mult(DoubleMatrix2D A, DoubleMatrix2D B)```
Linear algebraic matrix-matrix multiplication; C = A x B.
`DoubleMatrix2D` Algebra.```multOuter(DoubleMatrix1D x, DoubleMatrix1D y, DoubleMatrix2D A)```
Outer product of two vectors; Sets A[i,j] = x[i] * y[j].
`double` Algebra.`norm1(DoubleMatrix2D A)`
Returns the one-norm of matrix A, which is the maximum absolute column sum.
`double` Algebra.`norm2(DoubleMatrix2D A)`
Returns the two-norm of matrix A, which is the maximum singular value; obtained from SVD.
`double` Algebra.`normF(DoubleMatrix2D A)`
Returns the Frobenius norm of matrix A, which is Sqrt(Sum(A[i,j]2)).
`double` Algebra.`normInfinity(DoubleMatrix2D A)`
Returns the infinity norm of matrix A, which is the maximum absolute row sum.
`DoubleMatrix2D` Algebra.```permute(DoubleMatrix2D A, int[] rowIndexes, int[] columnIndexes)```
Constructs and returns a new row and column permuted selection view of matrix A; equivalent to `viewSelection(int[],int[])`.
`DoubleMatrix2D` Algebra.```permuteColumns(DoubleMatrix2D A, int[] indexes, int[] work)```
Modifies the given matrix A such that it's columns are permuted as specified; Useful for pivoting.
`DoubleMatrix2D` Algebra.```permuteRows(DoubleMatrix2D A, int[] indexes, int[] work)```
Modifies the given matrix A such that it's rows are permuted as specified; Useful for pivoting.
`DoubleMatrix2D` Algebra.```pow(DoubleMatrix2D A, int p)```
Linear algebraic matrix power; B = Ak <==> B = A*A*...*A.
`int` Algebra.`rank(DoubleMatrix2D A)`
Returns the effective numerical rank of matrix A, obtained from Singular Value Decomposition.
`protected double[]` SmpBlas.```run(DoubleMatrix2D A, boolean collectResults, Matrix2DMatrix2DFunction fun)```
`protected double[]` SmpBlas.```run(DoubleMatrix2D A, DoubleMatrix2D B, boolean collectResults, Matrix2DMatrix2DFunction fun)```
`int` Property.`semiBandwidth(DoubleMatrix2D A)`
Returns the semi-bandwidth of the given square matrix A.
`void` LUDecompositionQuick.`setLU(DoubleMatrix2D LU)`
Sets the combined lower and upper triangular factor, LU.
`DoubleMatrix2D` CholeskyDecomposition.`solve(DoubleMatrix2D B)`
Solves A*X = B; returns X.
`DoubleMatrix2D` QRDecomposition.`solve(DoubleMatrix2D B)`
Least squares solution of A*X = B; returns X.
`void` LUDecompositionQuick.`solve(DoubleMatrix2D B)`
Solves the system of equations A*X = B (in-place).
`DoubleMatrix2D` LUDecomposition.`solve(DoubleMatrix2D B)`
Solves A*X = B.
`DoubleMatrix2D` Algebra.```solve(DoubleMatrix2D A, DoubleMatrix2D B)```
Solves A*X = B.
`DoubleMatrix2D` Algebra.```solveTranspose(DoubleMatrix2D A, DoubleMatrix2D B)```
Solves X*A = B, which is also A'*X' = B'.
`DoubleMatrix2D` Algebra.```subMatrix(DoubleMatrix2D A, int fromRow, int toRow, int fromColumn, int toColumn)```
Constructs and returns a new sub-range view which is the sub matrix A[fromRow..toRow,fromColumn..toColumn].
`String` Property.`toString(DoubleMatrix2D A)`
Returns summary information about the given matrix A.
`String` Algebra.`toString(DoubleMatrix2D matrix)`
Returns a String with (propertyName, propertyValue) pairs.
`String` Algebra.`toVerboseString(DoubleMatrix2D matrix)`
Returns the results of toString(A) and additionally the results of all sorts of decompositions applied to the given matrix.
`double` Algebra.`trace(DoubleMatrix2D A)`
Returns the sum of the diagonal elements of matrix A; Sum(A[i,i]).
`DoubleMatrix2D` Algebra.`transpose(DoubleMatrix2D A)`
Constructs and returns a new view which is the transposition of the given matrix A.
`protected DoubleMatrix2D` Algebra.`trapezoidalLower(DoubleMatrix2D A)`
Modifies the matrix to be a lower trapezoidal matrix.
`int` Property.`upperBandwidth(DoubleMatrix2D A)`
The upper bandwidth of a square matrix A is the maximum j-i for which A[i,j] is nonzero and j > i.
`protected DoubleMatrix2D` LUDecompositionQuick.`upperTriangular(DoubleMatrix2D A)`
Modifies the matrix to be an upper triangular matrix.
Constructors in cern.colt.matrix.linalg with parameters of type DoubleMatrix2D
Constructor and Description
`CholeskyDecomposition(DoubleMatrix2D A)`
Constructs and returns a new Cholesky decomposition object for a symmetric and positive definite matrix; The decomposed matrices can be retrieved via instance methods of the returned decomposition object.
`EigenvalueDecomposition(DoubleMatrix2D A)`
Constructs and returns a new eigenvalue decomposition object; The decomposed matrices can be retrieved via instance methods of the returned decomposition object.
`LUDecomposition(DoubleMatrix2D A)`
Constructs and returns a new LU Decomposition object; The decomposed matrices can be retrieved via instance methods of the returned decomposition object.
`QRDecomposition(DoubleMatrix2D A)`
Constructs and returns a new QR decomposition object; computed by Householder reflections; The decomposed matrices can be retrieved via instance methods of the returned decomposition object.
`SingularValueDecomposition(DoubleMatrix2D Arg)`
Constructs and returns a new singular value decomposition object; The decomposed matrices can be retrieved via instance methods of the returned decomposition object.