public class EigenvalueDecomposition extends Object implements Serializable
If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal. I.e. A = V.mult(D.mult(transpose(V))) and V.mult(transpose(V)) equals the identity matrix.
If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The columns of V represent the eigenvectors in the sense that A*V = V*D, i.e. A.mult(V) equals V.mult(D). The matrix V may be badly conditioned, or even singular, so the validity of the equation A = V*D*inverse(V) depends upon Algebra.cond(V).
Constructor and Description |
---|
EigenvalueDecomposition(DoubleMatrix2D A)
Constructs and returns a new eigenvalue decomposition object;
The decomposed matrices can be retrieved via instance methods of the returned decomposition object.
|
Modifier and Type | Method and Description |
---|---|
DoubleMatrix2D |
getD()
Returns the block diagonal eigenvalue matrix, D.
|
DoubleMatrix1D |
getImagEigenvalues()
Returns the imaginary parts of the eigenvalues.
|
DoubleMatrix1D |
getRealEigenvalues()
Returns the real parts of the eigenvalues.
|
DoubleMatrix2D |
getV()
Returns the eigenvector matrix, V
|
String |
toString()
Returns a String with (propertyName, propertyValue) pairs.
|
public EigenvalueDecomposition(DoubleMatrix2D A)
A
- A square matrix.IllegalArgumentException
- if A is not square.public DoubleMatrix2D getD()
public DoubleMatrix1D getImagEigenvalues()
public DoubleMatrix1D getRealEigenvalues()
public DoubleMatrix2D getV()
Copyright © 2006–2019 SYSTAP, LLC DBA Blazegraph. All rights reserved.