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Introduction 
Bigdata® is a standards-based, high-performance, scalable, open-source graph 
database.  Written entirely in Java, the platform supports the SPARQL 1.1 family of 
specifications, including Query, Update, Basic Federated Query, and Service 
Description.  Bigdata supports novel extensions for durable named solution sets, efficient 
storage and querying of reified statement models, and scalable graph analytics. The database 
supports multi-tenancy and can be deployed as an embedded database, a standalone server, a 
highly available replication cluster, and as a horizontally-sharded federation of services similar 
to Google¹s bigtable, Apache Accumulo, or Cassandra.  

The bigdata open source platform has been under continuous development since 2006. It is 
available under a dual licensing model (GPLv2 and commercial licensing) and a number of well-
known companies OEM, resell, or embed bigdata in their applications. SYSTAP, LLC leads the 
development of the open-source project and offers support subscriptions for both commercial 
and open-source users. Our goal is a robust, scalable, high-performance, and innovative 
platform. In this whitepaper, we will present the scale-up and scale-out architectures of the 
bigdata database, index management, and query processing and special concerns for memory 
management under Java. 

Bigdata Database Architecture 
In fields as diverse as pharmacology, finance, fraud detection, and intelligence analysis, better 
analysis and decision making can be facilitated by taking into consideration large amounts of 
heterogeneous data from many sources in many formats, and degrees of structure, and update 
rates.  Pouring this data together often yields new insights and interesting cross-connections not 
readily apparent when considering the various data sets in isolation.  Such “mash-ups” can 
provide the basis for operational decision making in complex and dynamic domains, support 
new forms of online collaboration, and help manage risks in complex markets. 

In order to address this problem, we require three things.  First, we must be able to load and 
query very large data sets that exceed the reasonable processing capabilities of even high-end 
server platforms.  Second, those data sets are heterogeneous and interesting data often 
appears after the system has been deployed, so we must be able to dynamically align the 
schema for those data sets and to continuously integrate new data.  Third, we require the ability 
to maintain data provenance and drill down into the source detail. 

The relational model benefits tremendously from its structure, but lacks the flexibility to rapidly 
and declaratively integrate new schema into existing systems – relational data integration efforts 
are often measured in months, not minutes.  Expressive Semantic Web technologies such as 
RDF and OWL have helped reshape this problem, but RDF database technology has not been 
able to keep up with scale demands. Until very recently, RDF databases and OWL reasoners 
have not tried to tackle the issues associated with large dynamic data sets, and were 
insufficiently scalable to attack real world problems where data size can be on the order of 
billions or even trillions of triples.  Without the ability to reach scale, potential Semantic Web 
adopters turn to cloud computing technologies such as map/reduce, not fully understanding the 
tradeoffs between the two technologies and, in particular, the limitations of map/reduce 
processing for handling graph structured or linked data. 
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Bigdata® 1 2 is a horizontally-scaled, general purpose storage and computing fabric for ordered 
data (B+Trees), designed to operate on a cluster of commodity hardware.  While many 
clustered databases rely on a fixed, and often capacity limited, hash-partitioning architecture, 
bigdata uses dynamically partitioned key-range shards.  This architecture was chosen to 
remove any realistic scaling limits – in principle, bigdata may be deployed on 10s, 100s, or even 
thousands of machines.  Further, and unlike hash-partitioned approaches, new capacity may be 
added incrementally to data centers without requiring the full reload of all data. On top of that 
core is the bigdata RDF Store, a massively scalable RDF database supporting RDFS and OWL 
Lite reasoning, high-level query (SPARQL), and datum level provenance. 

Deployment models 
Bigdata supports several distinct deployment models: 

- Embedded Database (Journal) 

- Servlet Engine (Journal in WAR) 

- Replication Cluster (HA Journal) 

- Horizontally scaled, parallel database (Federation) aka scale-out. 

These deployment models are based on two distinct architectures.  The embedded database, 
WAR, and the replication cluster are scale-up architectures based on the Journal.  The Journal 
provides basic support for index management against a single backing store. The Federation is 
a scale-out architecture using dynamically partitioned indices to distribute the data within each 
index across the resources of a compute cluster.  

The benefits of the scale-out architecture are significant. Using the scale-out architecture, a 
cluster can scale to petabytes of data and has much greater throughput than a single machine. 
However, scale-out has higher latency for selective queries due to the increased overhead of 
internode communication. Also, while updates on the Journal and replication cluster are ACID, 
updates on the federation are shard-wise ACID. Finally, while it is always important to vector 
operations against indices, but vectored operations are absolutely required for good 
performance on the scale-out architecture. 

The choice of the right deployment model depends on your requirements. The Journal offers 
low latency operations due to its locality and scales to ~50B triples or quads on a single 
machine and offers a low total cost of ownership.  The replication cluster retains the architecture 
of the Journal, but adds high availability and horizontal scaling of query (but not data) without 
sacrificing the write performance of the database. The federation has higher latency due to the 
overhead of inter-node coordination and offers greater throughput for some query workloads.  
The federation can scale-out far beyond the Journal, but due to higher coordination costs, you 
need at least 3 machines to have performance similar to a single machine Journal. Since you 
can have the low-latency of the Journal combined with high availability and horizontally scaled 
query on a 3-node replication cluster, the scale-out architecture of the federation really only 
makes sense for very large data sets and clusters of 8 or more machines. 

All deployment models support the SAIL, SPARQL 1.1 Query, SPARQL Update, etc. 

                                                
1 http://www.bigdata.com/blog 
2 http://www.sourceforge.net/projects/bigdata 
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Concurrency Control 
Bigdata supports optional transactions based on MVCC.  Many database architectures are 
based on two phase locking (2PL), which is a pessimistic concurrency control strategy.  In 2PL, 
a transaction acquires locks as it executes and readers and writes will block in their access 
conflicts with the locks for running transactions.  MVCC is an optimistic concurrency control 
strategy and relies on the use of timestamps to detect conflicts when a transaction is validated.  
MVCC allows very high concurrency since readers never block and writers can run concurrently 
even when they touch the same region of the disk (there is no sense of a row, page or table 
lock).  If two writers modify the same tuple in an index, then that conflict is detected when the 
transaction validates and the second transaction will fail unless the conflict can be resolved (in 
fact, bigdata can resolve many write-write conflicts for RDF).  The MVCC design and the ability 
to choose whether or not operations will be isolatable by transactions is driven deep into the 
architecture, including the copy-on-write mechanisms of the B+Tree, the Journal and backing 
store architectures, and the history retention policy.  

Transaction processing on a federation is optional by design.  Transactions can greatly simplify 
application architecture, but they can limit both performance and scale through increased 
coordination costs. For example, Google® developed their “row store” 3 to address a set of very 
specific application requirements.  In particular, they had a requirement for extremely high 
concurrent read writes and very high concurrent write rates.  Distributed transaction processing 
was ruled out because each commit must be coordinated with the transaction service, which 
limits the potential throughput of a distributed database.  In their design, Google opted to restrict 
concurrency control to ACID4 operations on “rows” within a “column family.”  With this design, a 
purely local locking scheme may be used and substantially higher concurrency may be 
obtained.  Bigdata uses this approach for its “row store”, for the lexicon for an RDF database, 
and for high throughput distributed bulk data load. 

For a federation, distributed transactions5 are primarily used to support snapshot isolation for 
query.  An “isolatable” index (one which supports transactional isolation) maintains per-tuple 
revision timestamps, which are used to detect and, when possible, reconcile write-write 
conflicts.  The transaction service is responsible for assigning transaction identifiers, which are 
timestamps, revision timestamps, and commit timestamps.  The transaction service maintains a 
record of the open transactions and manages read-locks on the historical states of the 
database.  The read-lock is just the timestamp of the earliest running transaction, but it plays an 
important role in managing resources as discussed below. 

Managing database history 
Bigdata is an immortal database architecture with a configurable history retention policy.  An 
immortal database is one in which you can request a consistent view of the database at any 
point in its history, essentially winding back the clock to the state of the database at some prior 

                                                
3 “Bigtable: A Distributed Storage System for Structured Data”,http://labs.google.com/papers/bigtable.html 
4 ACID is an acronym for four common database properties: Atomicity, Consistency, Isolation, Durability.  
Reuter, Andreas; Haerder, Theo (December 1983). “Principles of Transaction-Oriented Database 
Recovery”. ACM Computing Surveys (ACSUR) 15 (4): 287-317. 
5 Bigdata® supports both read-only and read-write transactions in its single server mode and HA 
replication cluster, and distributed read-only transactions on a federation.  Distributed read-only 
transactions are used for query and when computing the closure over an RDF database.  Support for 
distributed read-write transactions on a federation has been contemplated, but never implemented. 
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day, month or year.  This feature can be used in many interesting ways, including regulatory 
compliance, examining changes in the state of accounts over time, etc.  

For many applications, access to unlimited history is not required.  Therefore you can configure 
the amount of history that will be retained by the database.  This is done by specifying the 
minimum age before a commit point may be released, e.g., 5 minutes, 1 day, 2 weeks, or 12 
months.  The minimum release age can also be set to zero, in which case bigdata will release 
the resources associated with historical commit points as soon as the read locks for those 
resources have been released.  Equally, the minimum age can be set to a very large number, in 
which case historical commit points will never be released. 

The minimum release age determines which historical states you can access, not the age of the 
oldest record in the database.  For example, if you have a 5 day history retention policy, and 
you insert a tuple into an index, then that tuple would remain in the index until 5 days after it was 
overwritten or deleted.  If you never update that tuple, the original value will never be released.  
If you do delete the tuple, then you will still be able to read from historical database states 
containing that tuple for the next 5 days.  Applications can apply additional logic if they want to 
delete records once they reach a certain age.  This can be done efficiently in terms of the tuple 
revision timestamps. 

B+Trees 
The B+Tree is a central data structure for database systems because it provides search, insert, 
update in logarithmic amortized time. The bigdata B+Tree fully implements the tree balancing 
operations and remains balanced under inserts and deletes.  The mutable B+Tree 
implementation is single threaded under mutation, but allows concurrent readers.  In general, 
readers do not use the mutable view of a B+Tree, so readers do not block for writers.  For 
scale-out, each B+Tree key-range partition is a view comprised of a mutable B+Tree instance 
with zero or more read-optimized, read-only B+Tree files known as index segments.  The index 
segment files support fast double-linked navigation between leaves – they are used to support 
the dynamic sharding process on a federation.  bigdata uses a constant (and configurable) 
branching factor and allows the page size of the index to vary.  This works out well with overall 
copy-on-write architecture and simplifies some decisions in the maintenance of the index. 

 
Figure 1 -- B+Tree architecture. 
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In bigdata, an index maps unsigned byte[] keys to byte[] values6.  Mechanisms are provided 
which support the encoding of single and multi-field numeric, ASCII, and Unicode data.  
Likewise, extensible mechanisms provide for (de)serialization of application data as byte[]s for 
values.  An index entry is known as a “tuple”.  In addition to the key and value, a tuple contains 
a “deleted” flag which is used to prevent reads through to historical data in index views, 
discussed below, and a revision timestamp, which supports optional transaction processing 
based on Multi-Version Concurrency Control (MVCC)7.  The IndexMetadata object is used to 
configure both local and scale-out indices.  Some of its most important attributes are the index 
name, index UUID, branching factor, objects that know how to serialize application keys and 
both serialize and deserialize application values store in the index, and the key and value coder 
objects.  

The B+Tree never overwrites records (nodes or leaves) on the disk.  Instead, it uses copy-on-
write for clean records, expands them into Java objects for fast mutation and places them onto a 
hard reference ring buffer for that B+Tree instance. On eviction from the ring buffer, and during 
checkpoint operations, records are coded into their binary format and written on the backing 
store. 

 Records can be directly accessed in their coded form.  The default key coding technique is 
front coding, which supports fast binary search with good compression.  Canonical Huffman8 9 
coding is supported for values.  Custom coders may be defined, and can be significantly faster 
for specific applications. 

The high-level API for the B+Tree includes methods that operate on a single key-value pair 
(insert, lookup, contains, remove), methods which operate on key ranges (rangeCount, 
rangeIterator), and a set of methods to submit Java procedures that are mapped against the 
index and execute locally on the appropriate data services (see below).  Scale-out applications 
make extensive use of the key-range methods, mapped index procedures, and asynchronous 
write buffers to ensure high performance with distributed data. 

The rangeCount(fromKey,toKey) method is of particular relevance for query planning.  The 
B+Tree nodes internally track the #of tuples spanned by a separator key.  Using this 
information, the B+Tree can report the cardinality of a key-range on an index using only two key 
probes against the index.  This range count will be exact unless delete markers are being used, 
in which case it will be an upper bound (the range count includes the tuples with delete 
markers).  Fast range counts are also available on a federation, where a key-range may span 
multiple index partitions. 

Scale-Up Architecture 
The Journal manages a backing store, provides low-level mechanisms for writing and reading 
allocations on that file, and has higher-level mechanisms for registering and operating on 
indices. There are several different backing store models for the Journal.  The most important 
are described below. 

                                                
6 We are reviewing this design decision with respect to column-wise storage. 
7 Reed, D.P.. "Naming and Synchronization in a Decentralized Computer System". MIT dissertation. 
http://www.lcs.mit.edu/publications/specpub.php?id=773 
8 Huffman coding, http://en.wikipedia.org/wiki/Huffman_coding 
9 Canonical Huffman coding, http://en.wikipedia.org/wiki/Canonical_Huffman_code 
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WORM 
The WORM is a Write Once Read Many store.  It is an indelible append-only file structure, with 
root blocks that are updated at each commit point. The WORM is primarily used to buffer writes 
in the scale-out architecture before they are migrated onto read-optimized, read-only B+Tree 
files. 

RWStore 
The RWStore provides a read/write model based on managed allocation slots on the backing 
file and can address up to 16TB of data. The vast majority of the allocations are the nodes and 
leaves of the indices. As noted above, index updates use a copy-on-write model.  The old 
version of the index page is deleted, but it will remain visible until (a) no open transaction is 
reading on a commit point in which that index page is visible; and (b) the history retention period 
has expired for commit points in which the page is visible.  These criteria are summarized and 
tracked as the earliest release time. Commit points before that release time may be released 
and their allocations recycled.  The recycler does not use a vacuum process. Instead, the 
addresses of the deleted pages are written onto delete blocks.  When the commit point is 
released, the delete blocks are read and the associated pages are bit flagged as free in the 
allocators. 

MemStore 
The MemStore provides a similar capability for managed allocations, but the data are stored in 
the C heap (rather than the Java managed object heap). This avoids problems associated with 
garbage collection overhead for high object creation / retention rates.  The MemStore is 100% 
Java.  It relies on NIO buffers to create allocations outside of the Java managed object heap.  
The MemStore is used internally in combination with the HTree10 data structure for analytic 
query operations requiring highly scalable hash indices. 

High Availability 
The HAJournalServer provides a highly available replication cluster for the scale-up database 
deployment architecture (the Journal). The HAJournalServer provides horizontal scaling of 
query, not data. Since the data is fully replicated on each node, query scales linearly in the size 
of the replication cluster. Because query relies entirely on local indices, the HAJournalServer 
offers the same low latency for query as the Journal. In contrast, in a scale-out deployment, the 
data is partitioned and distributed across the nodes of a cluster. Because of this partitioning, 
query evaluation must be coordinated across multiple nodes in a scale-out deployment. Due to 
this higher coordination overhead, scale-out query has higher latency, but can achieve higher 
throughput by doing more parallel work. Due to the combination of low latency query, horizontal 
scaling of query, and high availability, the HAJournalServer deployment model should be 
preferred when the data scale will be less than 50 billions and when low latency for individual 
queries is more important than throughput on high data volume queries. 

                                                
10 A Robust Scheme for Multilevel Extendible Hashing by Sven Helmer, Thomas Neumann, Guido 
Moerkotte. ISCIS 2003: 220-227 
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High availability is based on a quorum model and the 
low-level replication of write cache blocks across a 
pipeline of services. A highly available service exposes 
an RMI interface using Apache River and establishes 
watchers (that reflect) and actors (that influence) the 
distributed quorum state in Apache zookeeper. Sockets 
are used for efficient transfer of write cache blocks 
along the write pipeline. The services publish 
themselves through zookeeper. Services register with 
the quorum for a given logical service. A majority of 
services must form a consensus around the last 
commit point on the database. One of those services is 
elected as the leader and the others are elected as 
followers (collectively, these are referred to as the 
joined services – the services that are joined with the 
met quorum). Once a quorum meets, the leader 
services write requests while reads may be served by 
the leader or any of the followers. The followers are 
fully consistent with the leader at each commit point. If a follower can not commit, it will drop out 
of the quorum and resynchronize before re-entering the quorum. 

Write replication occurs at the level of 1MB cache blocks. Each cache blocks typically contain 
many records, as well as indicating records that have been released. Writes are coalesced in 
the cache on the leader, leading to a very significant reduction in disk and network IO. Followers 
receive and relay write cache blocks and also lay them down on the local backing store. In 
addition, both the leaders and the followers write the cache blocks onto a HALog file. The write 
pipeline is flushed before each commit to ensure that all services are synchronized at each 
commit point. A 2-phase commit protocol is used. If a majority of the joined services votes for a 
commit, then the root blocks are applied. Otherwise the write set is discarded. This provides an 
ACID guarantee for the highly available replication cluster. 

HALog files play an important role in the HA architecture. Each HALog file contains the entire 
write set for a commit point, together with the opening and closing of root blocks for that commit 
point. HALog files provide the basis for both incremental backup, online resynchronization of 
services after a temporary disconnect, and online disaster recovery of a service from the other 
services in a quorum. HALog files are retained until the later of (a) their capture by an online 
backup mechanism, and (b) a fully met quorum. 

Online resynchronization is achieved by replaying the HALog files from the leader for the 
missing commit points. The service will go through a local commit point for each HALog file it 
replays. Once it catches up it will join the already met quorum. If any HALog files are 
unavailable or corrupt, then an online rebuild replicates the leader’s committed state and then 
enters the resynchronization protocol. These processes are automatic. 

Online backup uses the same mechanisms. Incremental backups request any new HALog files, 
and write them into a locally accessible directory. Full backups request a copy of the leader’s 
backing store. The replication cluster remains online during backups. Restore is an offline 
process. The desired full backup and any subsequent HALog files are copied into the data 
directory of the service. When the service starts, it will apply all HALog files for commit points 
more recent than the last commit point on the Journal. Once the HALog files have been 
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replayed, the service will seek a consensus (if no quorum is met) or attempt to resynchronize 
and join an already met quorum. 

Scale-Out Architecture 
Bigdata is a general-purpose, horizontally scaled architecture for persistent, ordered data.  The 
overall approach utilizes key-range partitioned B+Tree11 indices distributed across the resources 
of a cluster.  This choice was influenced by previous work on distributed database architectures, 
including Google’s bigtable12 project. 

Services Architecture 
The bigdata federation is a services architecture.  The Data Services correspond to the concept 
of a tablet server in Google’s bigtable or Apache Accumulo. Each Data Service has 
responsibility for some number of index partitions. However, unlike those platforms, the Data 
Service can support distributed query processing as well as servicing read and write requests. 
This makes it possible to co-locate JOIN processing with the data on which a JOIN must read.  
The Metadata Service is also referred to as the shard locator service – it maintains a B+Tree 
over the key-range partitions for each scale-out index, mapping each key-range partition onto a 
partition metadata record required to locate the index partition.  Clients requiring a key-range 
scan of an index will obtain a locator scan for that key-range.  The locator scan visits the 
partition metadata records. The client then issues separate requests to the data service for each 
index partition.  A transaction service coordinates read locks to support snapshot isolation 
across the cluster and tracks the earliest commit point that must be retained by the data 
services in order to satisfy the open transactions and the configured history retention period for 
the database. Client services provide a container for executing distributed tasks. Jini (now the 
Apache river project) is used for service registry and discovery.  Global synchronous locks and 
configuration management are realized using Apache zookeeper.  Support for SPARQL 
processing is achieved by integration with the Sesame 2 platform13. 

                                                
11 Bayer, R. and McCreight, E. Organization and Maintenance of Large Ordered Indexes. Acta 
Informatica 1 (1972) 173-189.; Bayer, R. and Unterauer, Prefix B-trees. ACM Trans. On Database 
Systems, 2,1 (Mar., 1977) 11-26 
12 “Bigtable: A Distributed Storage System for Structured 
Data”,http://labs.google.com/papers/bigtable.html 
13 Support for additional RDF platforms, including Jena, is being considered. 
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Figure 2 The services architecture for a bigdata federation. 

Service Discovery 
Bigdata services advertise themselves in a jini service registrar and are discovered by lookups 
against that registrar.  Clients await discovery of the transaction service and the metadata 
service, and then register or lookup indices using the metadata service.  The metadata service 
maps key ranges for each scale-out index onto logical data services.  When a client issues a 
request against a scale-out index, the bigdata library transparently resolves the locator(s) for 
that query.  Clients obtain proxies for the data services using jini, then talk directly to the data 
services.  This process is illustrated in Figure 3, and is completely transparent to bigdata 
applications.  The client library automatically handles redirects when an index partition is 
moved, split or joins and data service failover. 
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Figure 3: Service discovery. 
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Left: Clients and services advertise themselves with the service registrar (a). Clients discover the 
shard locator (b).  

Right: Clients discover the locations of index shards (a), discover the data services hosting those 
shards (b), and then talk directly to those data services (c). 

Dynamic Partitioning 
Bigdata indices are dynamically broken down into key-range shards, called index partitions, in a 
manner that is completely transparent to clients.  Each index partition is a collection of local 
resources that contain all tuples for some key-range of a scale-out index and is assigned a 
unique identifier (a 32-bit integer).   

There are three basic operations on an index partition: split, which divides an index partition into 
two (or more) index partitions covering the same key-range; move, which moves an index 
partition from one data service to another, typically on a different machine in the cluster; and 
join, which joins two index partitions that are siblings, creating a single index partition covering 
the same key-range.  These operations are invoked transparently and asynchronously.  

p0# split& p1# p2#

p2# join& p3#p1#

p3# move& p4#  
Figure 4 Basic operations on index partitions. 

The data in the indices is strictly conserved by these operations, only the index partition 
identifier, the index partition boundaries (split, join), or the index partition location (move) are 
changed.  The index partition identifier is linked to a specific key-range and a specific location.  
Since these operations change either the key-range and/or the location, they always assign a 
new index partition identifier.  Requests for old index partitions are easily recognized as having 
index partition identifiers that have been retired and result in stale locator exceptions.  The 
client-side views of the scale-out indices automatically trap stale locator exceptions and redirect 
and reissue requests as necessary. 

Metadata Service 
Index partition locators are maintained in a metadata index that lives on a specialized data 
service known as the metadata service.  An index partition locator maps a key-range for an 
index onto an index partition identifier and the data service hosting that index partition.  The key 
for the tuples in the metadata index is simply the first key that could enter the corresponding 
index partition. Depending on the data scale, there may be thousands of index partitions per 
scale-out index. 

Data Services 
Each data service maintains an append-only write buffer (a WORM mode Journal) and an 
arbitrary number of read-only, read-optimized index segments.  Each index partition is, in fact, a 
view onto (a) the mutable B+Tree on the live journal; and (b) historical data on a combination of 
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old journals and index segments.  The nominal capacity of the Data Service journal is ~200M.  
Likewise, the target size for the index segments in a compact index partition view is ~200M.  
There may be 100s or 1000s of index partitions per data service.  Thus index segment files form 
the vast majority of the persistent state managed by a data service. 

Index Segments 
Index segments have been briefly discussed above.  Each index segment is the result of a 
batch build operation and has data for some key range of an index as of some commit point on 
the database.  The index segment is optimized for read performance.  The nodes of the B+Tree 
are laid out in key order on the disk and are typically read in a single IO when the index 
segment is opened.  The leaves are also laid out in key-order on the disk and are linked to both 
their predecessors and followers in key order.  A single IO is required to read a leaf from the 
disk, and sequential scans can be performed efficient in either direction. 

Bloom filters 
A bloom filter is an in memory data structure that can very rapidly determine whether a key IS 
NOT in an index. When the bloom filter reports "no", you are done and you do not touch the 
index. When the bloom filter reports "yes", you have to read the index to verify that there really 
is a hit.  Bloom filters are a stochastic data structure, require about 1 byte per index entry, and 
must be provisioned up front for an expected number of index entries. So if you expect 10M 
triples that is a 10MB data structure. Since bloom filters do not scale-up, they are automatically 
disabled once the number of index entries in the mutable B+Tree exceeds about 2M tuples.  

Bloom filters may be configured for scale-out indices.  Each time an index partition build or 
merge operation generates a new index segment file, the data on the mutable B+Tree is 
migrated into read-optimized index segments.  Every time we overflow a journal, we wind up 
with a new (empty) B+Tree to absorb writes, so the bloom filter on the journal is automatically 
re-enabled.  Further, during build and merge operations we have perfect knowledge of the 
number of tuples in an index segment and generate an exact fit bloom filter. This can provide a 
dramatic boost when a distributed query includes joins that wind up doing a large number of 
point lookups to verify that a fully bound triple pattern exists in the data. 

Overflow Processing 
Periodically writes on a data service cause the journal to reach its nominal size on the disk – 
this is known as an “overflow.” When this occurs, a new journal is created, and an 
asynchronous process begins which migrates buffered writes from the old journal onto new 
index segments. Asynchronous overflow processing defines two additional operations on index 
partitions: build, which copies only the buffered writes for the index partitions from the old 
journal onto a new index segment; and compacting merge, which copies all tuples in the index 
partition view into a new index segment.  Index partition builds make it possible to quickly retire 
the old journal, but they add a requirement to maintain delete markers on tuples in order to 
prevent historical tuples from re-entering the index partition view. Index partition merges are 
more expensive, but they produce a compact view of the tuples in which duplicates have been 
eradicated. The decision to build vs. merge is made locally based on the complexity of the index 
partition view and the relative requirements of different index views for a data service.  The 
asynchronous overflow tasks are arranged in a priority queue.  Separate thread pools are used 
to limit the number of concurrent build tasks and concurrent merge tasks.  The decision to split 
an index partition into two index partitions or to join two index partitions into a single index 
partition is made after a merge when there is a good estimate of the space requirements on disk 
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for the index partition.  The decision to move an index partition is based on load.  A merge is 
always performed before a move to produce a compact view that is then sent across a socket to 
the receiving service14. 

Figure 5: Diagram illustrating how the view of a shard evolves over time.  The index segment files 
represent data from the previous journal.  A new journal is opened each time the current journal 
files up. 

When a scale-out index is registered, the following actions are taken: First, a metadata index is 
created for that scale-out index on the metadata service.  This will be used to locate the index 
partitions for that scale-out index.  Second, a single index partition is created an arbitrary data 
service.  Third, a locator is inserted into the metadata index mapping the key-range ([],∞) onto 
that index partition15.  Clients resolve the metadata service, and probe it to obtain the locator(s) 
for the desired scale-out index.  The locator contains the data service identifier as well as the 
key-range ([],∞) for the index partition. Clients then resolve the data service identifier to the data 
service and begin writing on the index partition on that data service. 

                                                
14  A similar design was described in “Bigtable: A Distributed Storage System for Structured Data”, 
http://labs.google.com/papers/bigtable.html. 
15 All keys are translated into unsigned byte[]s.  An empty byte[] is the first possible key in any bigdata 
index.  The symbol ∞ is used to indicate an arbitrarily long unsigned byte[] containing 0xFF in all positions 
and corresponds to the greatest possible key in any bigdata index and is indicated internally by a null 
reference. 

•  Ini%al(journal(on(DS.(

•  Incremental(build(of(new(
segments(for(a(shard(
with(each(journal(
overflow.(

•  Shard(periodically(
undergoes(compac%ng(
merge.(

•  Shard(will(split(at(200MB.(

READ 

READ 

journaln(
seg(
0(

seg(
nC1(

build WRITE 

seg(
n(

tim
e 

journaln+1(

tn 

t0 

tn+1 

READ 

WRITE 

WRITE merge 

journal0(



The bigdata® RDF Database  Technical Whitepaper 

SYSTAP, LLC Page 13 of 25 5/29/2013 

p0#
([],∞)##

Shard#Locator#
Service#

DataService1#  
Figure 6 Initial conditions place a single index partition on an arbitrary host. That index partition 
contains all data for the scale-out index. 

Eventually, writes on the initial index partition will cause its size on disk to exceed a configured 
threshold (~200M) and the index partition will be split. The split(s) are identified by examining 
the tuples in the index partition and choosing one or more separator key(s).  Each separator key 
specifies the first key which may enter a given index partition.  The separator keys for the 
locators of a scale-out index always span the key range ([],∞) without overlap.  Thus each key 
always falls into precisely one index partition. 

If necessary, applications may place additional constraints on the choice of the separator key.  
For example, this may be done to ensure that an index partition never splits a logical row.  That 
guarantee may be used to achieve extremely high concurrent write rates using shard-wise ACID 
operations since concurrency control may be conducted locally on the data service.   

Scatter Split 
The potential throughput of an index increases as it is split and distributed across the machines 
in the cluster.  In order to rapidly distribute an index across the cluster and thereby increase the 
resources that can be brought to bear on that index, a scatter split is performed early in the life 
cycle of the first index partition for each scale-out index.   

p1#

p5#
p2# p3#

p4# p6#

p7#

p8# p9#
Shard#Locator#
Service#

([],∞)##

DataService1#  
Figure 7 Preparing for the initial scatter-split of an index. 

Unlike a normal split, which replaces one index partition with two index partitions, the scatter 
split replaces the initial index partition with N * M index partitions, where N is the number of data 
services and M is a small integer.  
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DataService1+

DataService2+Shard+Locator+
Service+

p1+

p2+

p9+

(1)++

(9)++

(2)++

(…)++

DataService9+  
Figure 8 After the scatter split.  The index has been distributed across the resources of the 
cluster.  In this example, there are nine data services in the cluster.  There can be hundreds. 

The new index partitions are redistributed across the cluster, leaving every Nth index partition on 
the original data service.  After the scatter-split operation, the throughput of the index may be 
dramatically increased. 

RDF Database Architecture 
In this section we define the Resource Description Framework (RDF), and show how an RDF 
database is realized using the bigdata architecture. Bigdata implements the Storage And 
Inference Layer (SAIL) API, which provides a pluggable backend for the Sesame platform 16. 
However, the query evaluation and transaction models for bigdata differ significantly from those 
of openrdf. 

Resource Description Framework 
The Resource Description Framework17 18 (RDF) may be understood as a general-purpose, 
schema-flexible model for describing metadata and graph-shaped information.  RDF represents 
information in the form of statements (triples or quads).  Each triple connotes an edge between 
two nodes in a graph.  The quad position can be used to give statements identity (our 
provenance mechanism is based on this approach) or to place statements within a named 
graph.  RDF provides some basic concepts used to model information - statements are 
composed of a subject (a URI or a Blank Node), a predicate (always a URI), an object (a URI, 
Blank Node, or Literal value), and a context (a URI or a Blank Node).  URIs are used to identity 
a particular resource19, whereas Literal values describe constants such as character strings and 

                                                
16 Openrdf, http://www.openrdf.org  
17 Resource Description Framework, http://www.w3.org/RDF/ 
18 RDF Semantics, http://www.w3.org/TR/rdf-mt/  
19 The benefit of URIs over traditional identifiers is two fold.  First, by using URIs, RDF may be to describe 
addressable information resources on the Web.  Second, URIs may be assigned within namespaces 
corresponding to Internet domain, which provides a decentralized mechanism for coining identifiers. 
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may carry either a language code or data type attribute in addition to their value.  RDF also 
provides an XML-based syntax (called RDF/XML20) for interchanging RDF graphs. 

There is also a model theoretic layer above the RDF model and RDF/XML interchange syntax 
that is useful for describing ontologies and for inference.  RDF Schema21 and the OWL Ontology 
Web Language22 (OWL) are two such standards-based layers on top of RDF.  RDF Schema is 
useful for describing class and property hierarchies.  OWL is a more expressive model.  Specific 
OWL constructs may be applied to federation and semantic alignment, such as 
owl:equivalentClass and owl:equivalentProperty (for aligning schemas) and owl:sameAs (for 
dynamically snapping instance data together).   

There is an inherent tension between expressivity and scale, since high expressivity is 
computationally expensive and only gets more so as data size increases.  Bigdata has focused 
on scale over expressivity.  

Database Schema for the RDF 
Bigdata supports three distinct RDF database modes: triples, triples with provenance23, and 
quads.  These modes reflect slight variations on a common database schema.  Abstractly, this 
schema can be conceptualized as a Lexicon and a Statement relation, each of which uses 
several indices.  The ensemble of these indices is collectively an RDF database instance.  Each 
RDF database is identified by its own namespace.  Any number of RDF database instances 
may be managed within a bigdata instance. 

Lexicon 
A wide variety of approaches have been used to manage the variable length attribute values, 
arbitrary cardinality of attribute values, and the lack of static typing associated with RDF data.  
Bigdata uses a combination of inline representations for numeric and fixed length RDF Literals 
with dictionary encoding of URIs and other Literals.  The inline representation is typically one 
byte larger than the corresponding primitive data type and imposes the natural sort order for the 
corresponding data type. Inline representations for xsd:decimal and xsd:integer are use a 
variable length encoding. URIs declared in a vocabulary when the KB instance was created are 
also inlined (in 2-3 bytes). Depending on the configuration, blank nodes are typically inlined. As 
discussed elsewhere, statements about statements are inlined as the representation of the 
statement they describe. 

The encoded forms of the RDF Values are known as Internal Values (IVs). IVs are variable 
length identifiers that capture various distinctions that are relevant to both RDF data and how 
the database encodes RDF Values.  Each IV includes a flags byte that indicates the kind of 
RDF Value (URI, Literal, or Blank node), the natural data type of the RDF Value (Unicode, 
xsd:byte, xsd:short, xsd:int, xsd:long, xsd:float, xsd:double, xsd:integer, etc.), whether the RDF 
Value is entirely captured by an inline representation, and whether this is an extension data 
type. User defined data types can be created using an extension byte that optionally follows the 

                                                
20 http://www.w3.org/TR/rdf-syntax-grammar/ 
21 http://www.w3.org/TR/rdf-schema/ 
22 http://www.w3.org/2004/OWL/ 
23 We are in the process of reconciling our statement level provenance mode with efficient support for 
RDF reification.  When this process is finished, we will support efficient statements about statement in 
both the triples and quads modes of the database. 
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flags byte.  Inlining is used to reduce the stride in the statement indices and to minimize the 
need to materialize RDF Values out of the dictionary indices when evaluating SPARQL 
FILTERs.  

The lexicon is comprised of three indices: 

- BLOBS - Large literals and URIs are stored in a BLOBS index. The key is formed from a 
flags byte, an extension byte, the int32 hash code of the Literal, and an int16 collision 
counter.  The value associated with each key is the Unicode representation of the RDF 
Value.  The use of this index helps to keep very large literals out of the TERM2ID index 
where they can introduce severe skew into the B+Tree page size. The hash code 
component of the BLOBS index introduces significant random IO during load operations.  
Therefore, the use of the BLOBS index is limited to literals whose string length is over a 
threshold (256). This is only a small percentage of the Literals in the data sets that we 
have examined. 

- TERM2ID – The key is the Unicode collation key for the Literal or URI.  The value is the 
assigned int64 unique identifier.  

- ID2TERM – The key is the identifier (from the TERM2ID index). The value is the RDF 
Value. 

Writes on the lexicon indices use an eventually consistent approach.  This allows lexicon writes 
to be made without global locking in a federation. An optional full text index maps tokens 
extracted from RDF Values onto the internal identifiers for those RDF values and may be used 
to perform keyword search against the triple or quad store. 

Statement Indices 
The Statement relation models the Subject, Predicate, Object and, optionally, the Context, for 
each statement.   The RDF database uses covering indices as first described in YARS 24.  For 
each possible combination of variables and constants in a basic triple pattern (or quad pattern), 
there is a clustered index that has good locality for that access pattern.  For a triple store, this 
requires 3 statement indices (SPO, POS, and OSP).  For a quad store, this requires 6 statement 
indices (OCSP, SPOC, CSPO, PCSO, POCS, and SPOC).  In each case the name of the index 
indicates the manner in which the Subject, Predicate, Object, and the optional Context have 
been ordered to form the keys for the index. 

SPARQL Query Processing 
It is important to keep in mind the architectural differences between the scale-up architecture 
(including the Journal, the WAR, and the HA replication cluster) and the scale-out architecture 
(the federation).  Index scans on the scale-up architecture turn into random IOs since the index 
is not in key order on the disk. However, index scans on the scale-out architecture turn into 
sequential IOs as the vast majority of all data in a cluster is on read-only index segment files in 
key order on the disk.  This architectural difference means that a cluster is able to more 
efficiently handle query plans that do sustained index scans.  However, since index scans turn 
into random IO on the scale-up architecture, you should use either lots of spindles or SSD to 
reduce the IO Wait for the disk. 

                                                
24 Andreas Harth, Stefan Decker. "Optimized Index Structures for Querying RDF from the Web". 3rd Latin 
American Web Congress, Buenos Aires - Argentina, Oct. 31 - Nov. 2 2005. 
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In addition to the inherent resources and opportunities for increased parallelism, the federation 
has two other architectural benefits. First, the scale-out architecture can use a bloom filter in 
front of each index segment. This means that point tests can be much faster on a cluster than 
on a single machine since correct rejections will never touch the disk. Second, all B+Tree nodes 
in an index segment are in one contiguous region on the disk. When the index segment is 
opened, the nodes are read in using a single sustained IO. Thereafter, a read to a leaf on an 
index segment will perform at most one IO.  

RDF query is based on statement patterns.  A triple pattern has the general form (S,P,O), where 
S, P, and O are either variables or constants in the Subject, Predicate, and Object position 
respectively. For the quad store, this is generalized as patterns having the form (S,P,O,C), 
where C is the context (or graph) position and may be either a blank node or a URI. 

Bigdata translates SPARQL into an Abstract Syntax Tree (AST) that is fairly close to the 
SPARQL syntax and then applies a series of rewrite optimizers on that AST.  Those optimizers 
handle a wide range of problems, including substituting constants into the query plan, 
generating the WHERE clause and projection for a DESCRIBE or CONSTRUCT query, static 
analysis of variables, flattening of groups, elimination of expressions or groups which are known 
to evaluate to a constant, ensuring that query plans are consistent with the bottom-up evaluation 
semantics of SPARQL, reordering joins, attaching FILTERS in the most advantageous 
locations, etc.  The rewrites are based on either fully decidable criteria or heuristics rather than 
searching the space of possible plans.  The use of heuristics makes it possible to answer 
queries having 50-100 JOINS with very low latency – as long as the joins make the query 
selective in the data. Joins are re-ordered based on a static analysis of the query, the 
propagation of variable bindings, fast cardinality estimates for the triple patterns 25, and an 
analysis of the propagation of in-scope variables between sub-groups and sub-SELECTs. 

 

Once the AST has been rewritten, it is translated into a physical query plan.  Each group graph 
pattern surviving from the original SPARQL query will be modeled by a sequence of physical 
operators. Nested groups are evaluated using solution set hash joins.  Visibility of variables 
within groups and sub-queries adhere to the rules for variable scope for SPARQL (e.g., as if 
bottom up evaluation were being performed). For a given group, there is generally a sequence 
of required joins corresponding to the statement patterns in the original query. There may also 
be optional joins, sub-SELECT joins, joins of pre-computed named solution sets, etc. 

                                                
25 A runtime join ordering algorithm based on chain sampling has been implemented, but is not yet 
integrated into the SPARQL query engine. 

 
Figure 9: Query execution. 
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Constraints (FILTERs) are evaluated as soon as the variables involved in the constraint are 
known to be bound and no later than the end of the group. Many SPARQL FILTERs can 
operate directly on IVs.  When a FILTER requires access to the materialized RDF Value, the 
query plan includes additional operators that ensure that RDF Value objects are materialized 
before they are used.  

The query plan is submitted to the vectored query engine for execution.  The query engine 
supports both scale-up and scale-out evaluation.  For scale-out, operators carry additional 
annotations which indicate whether they must run at the query controller (where the query was 
submitted for execution), whether they must be mapped against the index partition on which the 
access path will read (for joins) 26, and whether they can run on any data service in the 
federation.  The last operator in the query plan writes onto a sink that is drained by the client 
that submitted the query.  For scale-out, an operator in added at the end of the query plan to 
ensure that solutions are copied back to the query controller where they are accessible to the 
client.  For all other operators, the intermediate solutions are placed onto a work queue for the 
target operator.  The query engine manages the per-operator work queues, schedules the 
execution of operators, and manages the movement of data on a federation.  

 

Figure 10: Illustration of pipelined join execution in scale-out. 

The query engine supports concurrency at several levels: 

Concurrent execution queries.  A thread pool in the SPARQL end point controls the number of 
queries that may execute concurrently. 

Concurrent execution of different operators within the same query.  Parallelism here is not 
limited to avoid the potential for deadlock.  Parallelism at this level also helps to ensure that the 
work queue for each operator remains full and serves to minimize the latency for the query. 

Concurrent execution of the same operator within the same query on different chunks of data.  
An annotation is used to restrict parallelism at this level.  

Solutions are vectored into each operator.  Some operators are “at-once” and will buffer all 
intermediate solutions before execution.  For example, when evaluating a complex optional, we 
will fully buffer the intermediate solutions on a hash index before running the sub-group.  Other 

                                                
26 Support for parallel hash joins is planned. 
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operators are “blocked” – they will buffer large blocks of data on the native heap in order to 
operate on as much data as possible each time the execute – for example, a hash join against 
an access path scan. However, many operators are “pipelined” – they will execute for each 
chunk of intermediate solutions.   

Bigdata favors pipelined operator execution whenever possible. SPARQL queries involving a 
sequence of triple patterns are translated using nested index joins and have very low latency to 
the first solution. Each access path is constrained as solutions flow through the query engine. 
The constrained access paths are probed using the bindings for each intermediate solution. 
This turns into a highly localized reads on the B+Tree index for that access path.  Pipelined 
execution is also supported for DISTINCT and for simple OPTIONALs (an OPTIONAL 
containing a single triple pattern and no filters that require materialization of variable bindings 
against the lexicon). 

Query plans involving GROUP BY, ORDER BY, complex OPTIONALs, EXISTS, NOT EXISTS, 
MINUS, SERVICE, or sub-SELECT have stages that cannot produce any outputs until all 
solutions have been computed up to that point in the query plan. Such queries can still have low 
latency as long as the data volume is low. If you want to aggregate or order a subset of the 
data, then you can move part of the query into a sub-SELECT with a LIMIT but leave the 
aggregation or order by clause in the parent query. The sub-SELECT will be pipelined and 
evaluation will halt as soon as the limit is satisfied. The parent query can then aggregate or 
order just the data from the sub-SELECT.  

Query plans involving sub-GROUPs (including complex OPTIONALs, MINUS, and SERVICE), 
negation in filters (EXISTS, NOT EXISTS), or sub-SELECTs are all handled in a similar fashion.  
In each case, an operator that builds a hash index accumulates the intermediate solutions.  
Once all intermediate solutions have been accumulated, the bindings for the in-scope variables 
are vectored into the sub-plan.  The output solutions from the sub-plan are then joined back 
against the hash index and vectored into the remainder of the parent query plan.  UNION is 
handled with a TEE operator. The solutions for each side of the union are vectored into 
segments of the query plan that execute concurrently.  

Analytic Query Mode 
Incremental compilation and sophisticated runtime hot spot analysis of Java applications often 
yields code as fast a hand-coded C.  However, the managed object heap is a known weak point 
in the JVM. As the object creation rates and object retention period increase, the duty cycle time 
of the garbage collector increases. Eventually, the garbage collection begins to lock out the 
application for significant periods of time 27.  

                                                
27 This issue is well recognized in Java cache fabrics and has led to a variety of technologies using the 
native C heap rather than the managed object heap.  
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To address this problem, 
bigdata provides two 
implementations for each 
operation based on a hash 
index.  One version of the 
operator uses the JVM 
collection classes.  These 
classes provide excellent 
performance for modest 
collection sizes, and in some 
cases offer very high 
concurrency. The other 
version of the operator is 
based on the HTree index 
structure and the MemStore 

(which is backed by the native heap of the C process).  These operators scale to very large data 
sets without any overhead from the garbage collector.  For low-latency, select queries the 
performance of the native memory operators is close to the performance of the JVM versions of 
the same operator 28.  However, when the queries must materialize large 100s of millions of 
solutions, the JVM collection classes incur very high GC costs but the native memory operators 
scale gracefully. When the analytic query mode is specified, the query plan will use the native 
memory operators.  The analytic query mode may be enabled by a checkbox on the HTML 
FORM, a URL query parameter (?analytic), or a query hint (hint:analytic) may be used to enable 
the analytic query mode 29. 

Inference and truth maintenance 
RDF model theory defines various entailments.  The entailments are triples not explicitly given 
in the input, but the database must behave as if those triples were present.  There are broadly 
speaking two ways of handling such entailments.  First, they can be computed up-front when 
the data are loaded and stored in the database alongside the explicitly given triples.  This 
approach is known as eager closure because you compute the closure of the model theory over 
the explicit triples and materialize those inferred triples in the database.  The primary advantage 
of eager closure is that it materializes all data, both explicit and inferred, in the database. This 
greatly simplifies query planning and provides equally fast access paths for entailed and explicit 
statements.  Eager closure can be extremely efficient, but there can still be significant latency, 
especially for very large data sets, as the time to compute the closure is often on the order of 
the time to load the raw data.  The other drawback is space as the inferred triples are stored in 
the indices, thereby inflating the on disk size of the data set. 

The second approach is to materialize the inferences at query time.  This has the advantage 
that the data set may be queried as soon as the raw data have been loaded and the storage 
requirements are those for just the raw data.  There are a variety of techniques for doing this, 

                                                
28 When executing the BSBM benchmark with the 100M triple data sets, the performance using the native 
memory operators is within 10% of the performance of the JVM based operators. The performance 
difference is mostly due to the overhead of serialization of the solution sets onto the native memory 
pages.  However, the JVM DISTINCT operator allows more concurrency and can outperform the native 
memory DISTINCT operator that has to single-thread the updates on the underlying HTree index. 
29 The query hint must be used if you are not using the NanoSparqlServer as the SPARQL end point. 
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including backward reasoning 30 31, which is often used in Prolog systems, and magic sets 32, 
which is often used in datalog systems.  With SPARQL 1.1, property paths can also be used to 
embed select inferences into queries.  

An RDF database that utilizes an eager closure strategy faces another concern. It must 
maintain a coherent state for the database, including the inferred triples, as data are added to or 
removed from the database.  This problem is known as truth maintenance.  For RDF Schema, 
truth maintenance is trivial when adding new data.  However, it can become quite complex 
when data are removed, as a search must be conducted to determine whether or not inferences 
already in the database are still entailed without the retracted assertions.  

Once again, there are several ways to handle this problem.  One extreme is to throw away the 
inferences, deleting them from the database, and then re-compute the full forward closure of the 
remaining statements.  This has all the drawbacks associated with eager closure and even a 
trivial retraction can cause the entire closure to be re-computed.  Second, truth maintenance 
can be achieved by storing proof chains in an index33.  When a statement is retracted, the 
entailments of that statement are computed and, for each such entailment, the proof chains are 
consulted to determine whether or not the statement is still proven without the retracted 
assertion.  However, storing the proof chains can be cumbersome.  Third, magic sets once 
again offer an efficient alternative for a system using eager closure to pre-materialize 
inferences.  Rather than storing the proof chains, we can simply compute the set of entailments 
for the statements to be retracted and then submit queries against the database in which we 
inquire whether or not those statements are still proven. 

Bigdata supports a hybrid approach in which the eager closure is taken for some RDF Schema 
entailments while other entailments are only materialized at query time.  This approach is not 
uncommon among RDF databases.  In addition, the scale-up architecture also supports truth 
maintenance based on storing proof chains.  Truth maintenance is not available in scale-out 
because all updates would have to be serialized (executed in a single thread) in order for truth 
maintenance to have well defined semantics.  

Reification done right 
If you have a background with publishing, then you probably think of RDF as a metadata 
standard. RDF statements provide metadata about resources.  However, for interesting 
historical reasons34, RDF lacks a good solution for metadata about metadata – what is 

                                                
30 Robinson, J. A. 1965. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM 12, 1 (Jan. 
1965), 23-41. 
31 Cohen, J. 1996. Logic programming and constraint logic programming. ACM Comput. Surv. 28, 1 (Mar. 
1996), 257-259. 
32 J. D. Ullman, Bottom-up beats top-down for datalog, Proceedings of the eighth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems, p.140-149, March 1989, Philadelphia, 
Pennsylvania, United States. 
33 J. Broekstra, A. Kampman, Inferencing and Truth Maintenance in RDF Schema : Exploring a naive 
practical approach, http://www.openrdf.org/doc/papers/inferencing.pdf, in Workshop on Practical and 
Scalable Semantic Systems (PSSS), 2003. 
34 RDF was shaped by the constraints of first order predicate logic.  Allowing statements about 
statements into RDF model theory shifts that logic from first order predicate calculus, which does not 
permit statements about statements, into second order predicate calculus.  The original concept of the 
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sometimes called statements about statements. There are two mechanisms that may be used to 
capture provenance: RDF reification and named graphs.  Both are sources of confusion. RDF 
reification creates a model of a statement35, but does not assert the existence of the statement 
that it models. Even for the RDF/SPARQL community, reading, writing, and thinking in reified 
statement models is an awkward and unpleasant business. 

For some applications, it is sufficient to know the “source” of the document containing the 
assertions. In this case, named graphs are a good fit – the source is simply the name of the 
graph.  However, for many domains it is critical to know the provenance of each assertion, 
including who, when, where, etc. This amounts to statement level provenance.  Some security 
models also require the ability to specify the permissions for each datum independently.  Often 
these requirements are found in the same systems. 

RDF can also been seen as a graph standard. The URIs are vertices, the statements are edges 
or attributes.  However, for many graph mining applications, graphs are collections of weighted 
edges. To this community, statement models look like an extremely complex and ill-suited 
approach to representing what is, essentially, a sparse matrix.  The broader graph database 
community uses a property graph model36 where both vertices and edges may have attributes37. 
The RDF syntax obviously handles vertex attributes, but it leaves people scratching their heads 
when they try to understand how to capture link attributes. 

RDF needs to be able to support all of these use cases in an efficient and easy to understand 
manner.   

Over the years, we have implemented a number of different mechanisms in the bigdata 
platform, including statement identifiers that were assigned by the lexicon and representing 
statements about statements through inlining.  We are now moving towards a grand synthesis 
of these concepts – something that we call reification done right 38.  The key insights are (1) 
RDF reification does not dictate the physical schema; (2) RDF reification can be explicitly 
reconciled with statements about statements in the model theory39.  This means that we can 
automatically index reified statement models using a physical schema that is significantly more 
efficient in both space and query performance.  It also means, that we known exactly how to 
translate between a sparse matrix model or a property graph model and RDF; and (3) we need 
a better syntax – especially for query. 

Bigdata has a dedicated triples + provenance database mode.  This is based on the notion of 
statement identifiers40.  Internally, statement identifiers are represented as variable length IVs 

                                                                                                                                                       
Semantic Web steered clear of second order predicate calculus in order to avoid some pitfalls associated 
with previous knowledge representation frameworks. 
35 RDF Semantics, http://www.w3.org/TR/rdf-mt/ 
36 https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model  
37 Edges are often restricted to simple attributes.  However, the topic maps data model and hypergraphs 
both allow edges to double as vertices. 
38 The key insights here are due to a working group formed at the 2012 Dagstuhl Semantic Data 
Management workshop, with special thanks to Olaf Hartig, Tran Thanh, Orri Erring, and Yrjana Rankka. 
39 Many thanks to Olaf Hartig for this work on this. 
40 Statement identifiers reflect a concern best articulated in Topic Maps as the ability to make assertions 
about anything, even other assertions.  Topic Maps are not less concerned with model theory and 
entailments and focus more on an architecture for making assertions about subjects, including that two 
resources may identify the same subject. 
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whose encoding is precisely the encoding of the nested statement – plus a flags byte marking 
this as a statement identifier.  The advantage of this approach is that we do not need to store 
statement in the lexicon and we can immediately decompose a statement about statements into 
its component parts.   

There are three drawbacks to the current implementation. First, it hijacks the semantics of the 
GRAPH keyword in SPARQL to bind the statement as a variable and is therefore not compatible 
with indexing quads.  Second, it relies on an extension to the RDF/XML syntax to interchange 
statements about statements.  Third, the inlining technique relies on a prefix marker. Therefore, 
statements about a statement are not co-located with the ground statement in the indices.  We 
plan to fix these issues in a future release, thus allowing efficient indexing and querying of 
statements about statements to be used transparently in either the triples or quads mode of the 
database. 

The following examples illustrate the how this will work.  The double chevrons indicate where 
one statement is nested within another.  Unlike RDF reification, this syntax also implies the 
existence of the statement within the double chevrons 41.  In the indices, bigdata represents the 
statement about a statement as the composition of the IVs of its components, including the 
nested statement42.  

  <<:SAP :bought :sybase>> dc:source reuters:us-sybase .  

This same syntax is supported for query: 

SELECT ?src ?who { 
    <<?who :bought :sybase>> dc:source ?src 
} 

When used in this manner, there is an implicit variable binding for the embedded statement.  
Note that this query may be answered efficiently. For example, one query plan is: 

• 2-bound POS index scan (?who :bought sybase) => ?sid 

• JOIN (?sid dc:source ?src) 

The following is an alternative syntax makes that variable binding explicit and allows for its 
reuse: 

SELECT ?src ?who ?created { 
    <<?who :bought :sybase>> as ?sid . 
    ?sid dc:source ?src 
    OPTIONAL {?sid dc:created ?created} 
}  

                                                
41 We have spoken with a number of RDF vendors and RDF customers.  They are universally in favor of 
this simplification.  You can always use the RDF Reification syntax if you do not want this implication. 
42 The indexing of the statements about statements is a database schema choice.  It should be 
completely transparent to database users.  In fact, a database can transparently translate both reified 
statements and reified statement patterns into an internal format that is more efficient for indexing and 
query without offering the more pleasant syntax. The syntax is a sugar coating that makes it much more 
pleasant to deal with RDF Reification by eliminating some very ugly syntax structures. 
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The binding between the triple pattern and the ?sid variable can work in either direction. Given a 
binding for ?sid, it can decompose it into the (s,p,o) components of the bound statement. Given 
a statement expressed as (s,p,o) components, it can compose the inline representation of that 
statement and bind it on the variable ?sid. This allows easy bi-directional composition and 
decomposition of statements in a manner that is compatible with quads. 

Conclusion 
SPARQL addresses what is in many ways the “easy” problem for graphs – crisp pattern 
matching against attributed graphs. OPTIONAL adds some flexibility to these graph pattern 
matches, but does not change the fundamental problem addressed by SPARQL.   

We have been tracking with interest current research on heuristic query optimization 43, 
techniques to counteract latency in distributed query (symmetric hash joins 44 and eddies 45) and 
query against open web 46 47, including frameworks with the potential to support critical thinking 
about data on the open web 48, including reasoning about evidence supporting conflicting 
conclusions, unreliable conclusions, and conclusions relying on incomplete evidence 49 50 51 52.  
Another line of research on schema agnostic query 53 explores how people can ask questions 

                                                
43 Petros Tsialiamanis, Lefteris Sidirourgos, Irini Fundulaki, Vassilis Christophides, and Peter Boncz. 
2012. Heuristics-based query optimisation for SPARQL. In Proceedings of the 15th International 
Conference on Extending Database Technology (EDBT '12), Elke Rundensteiner, Volker Markl, Ioana 
Manolescu, Sihem Amer-Yahia, Felix Naumann, and Ismail Ari (Eds.). ACM, New York, NY, USA, 324-
335.  
44 Acosta, Maribel, et al. "ANAPSID: AN Adaptive query ProcesSing engIne for sparql enDpoints." The 
Semantic Web–ISWC 2011 (2011): 18-34. 
45 Avnur, Ron, and Joseph M. Hellerstein. "Eddies: Continuously adaptive query processing." ACM 
SIGMoD Record 29.2 (2000): 261-272. 
46 Hartig, Olaf, and Johann-Christoph Freytag. "Foundations of traversal based query execution over 
linked data." Proceedings of the 23rd ACM conference on Hypertext and social media. ACM, 2012. 
47 Theobald, Martin, et al.  URDF: Efficient reasoning in uncertain RDF knowledge bases with soft and 
hard rules.  Tech.  Rep. MPI-I-2010-5-002, Max Planck Institute Informatics (MPI-INF), 2010. 
48 Günter Ladwig, Thanh Tran, Linked data query processing strategies, Proceedings of the 9th 
international semantic web conference on The semantic web, November 07-11, 2010, Shanghai, China 
49 Cohen, Marvin S., Freeman, Jared T. and Wolf, Steve. (1996). Meta-recognition in time-stressed 
decision making: Recognizing, critiquing, and correcting. Journal of the Human Factors and Ergonomics 
Society (38,2), pp. 206-219. 
50 Cohen, M.S., Thompson, B.B.,Adelman, L., Bresnick, T.A. Lokendra Shastri, & Riedel (2000). Training 
Critical Thinking for The Battlefield. Volume I: Basis in Cognitive Theory and Research Arlington, VA: 
Cognitive Technologies, Inc. 
51 Cohen, M.S., Thompson, B.B.,Adelman, L., Bresnick, T.A. Lokendra Shastri, & Riedel (2000). Training 
Critical Thinking for The Battlefield. Volume III: Modeling and Simulation of Battlefield Critical 
Thinking. Arlington, VA: Cognitive Technologies, Inc. 
52 Thompson, B.B. & Cohen, M.S. (1999). Naturalistic Decision Making and Models of Computational 
Intelligence. In Jagota, A. Plate, T., Shastri, L., & Sun, R. (Eds). Connectionist symbol processing: Dead 
or alive? Neural Computing Surveys 2, pp. 26-28. 
53 Usability of Keyword-Driven Schema Agnostic Search, Lecture Notes in Computer Science Springer 
Berlin Heidelberg, 2012. 
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about data, especially large and potentially unbounded collections of linked data, when they 
have little or no a priori understanding of what may be found the data.  Similar concerns are also 
studied as graph search 54. Graph mining is concerned with discovering, identifying, 
aggregating, and summarizing interesting patterns in graphs. As in schema agnostic query, 
people tying to find interesting patterns in the data often do not know in advance which patterns 
will be “interesting.” Graph mining algorithms can often be expressed as functional vertex 
programs 55 56 57 58 using multiple full traversals over the graph, and decomposed over parallel 
hardware.  SYSTAP, LLC is currently leading a team of researchers to develop a capability for 
graph search and graph mining on GPGPUs.  GPGPUs are massively parallel hardware 
originally developed to accelerate video processing for games, and now used in cell phones and 
the world’s largest super computer 59. This will be an open source project under a liberal license.  
We plan to integrate this work into the bigdata platform, providing a seamless capability for 
linked data, structured graph query, graph search, and graph mining.  We also see this as an 
opportunity to apply GPUs to computational models of cognition 60 61 62 in support of large-scale 
open collaboration frameworks and mapping the human connectome 63 64 65. 

                                                
54 X. Yan, P. S. Yu, and J. Han. Graph Indexing: A Frequent Structure-Based Approach. SIGMOD, 2004. 
55 Malewicz, Grzegorz, et al. "Pregel: a system for large-scale graph processing."Proceedings of the 2010 
international conference on Management of data. ACM, 2010. 
56 Low, Yucheng, et al. "Graphlab: A new framework for parallel machine learning." arXiv preprint 
arXiv:1006.4990 (2010). 
57 Stutz, Philip, Abraham Bernstein, and William Cohen. "Signal/collect: Graph algorithms for the 
(semantic) web." The Semantic Web–ISWC 2010 (2010): 764-780. 
58 Kyrola, Aapo, Guy Blelloch, and Carlos Guestrin. "GraphChi: Large-scale graph computation on just a 
PC." OSDI, 2012. 
59 The Titan Supercomputer installation at the Oak Ridge National Laboratory achieves 20 Petaflops 
using 299,009 Opteron cores and 18,688 GPUs.  16 Opteron cores per node.  1 GPU per node. Each 
GPU has 2,496 CUDA cores delivering 3.52 Teraflops per GPU. 
60 Shastri, L and Mani, D.R. (1997) "Massively parallel knowledge representation and reasoning: Taking a 
cue from the brain". In Parallel Processing for Artificial Intelligence 3 (Eds) Geller, J., Kitano, H. and 
Suttner, C. Elsevier Science. 
61 Shastri, L. Recent Advances in Shruti. In, (Eds.) Fredric Maire, Ross Hayward, A Connectionist 
Systems For Knowledge Representation and Deduction. Joachim Diederich. Queensland University of 
Technology, Neurocomputing Research Center. 1997. (pp. 1-14). 
62 Thompson, B.B., Cohen, M. S., and Freeman, J.T. (1995). Metacognitive Behavior in Adaptive 
Agents. Proceedings of the World Congress on Neural Networks. 
63 Sporns O, Tononi G, Kotter R: The Human Connectome: A Structural Description of the Human Brain. 
PLoS Comput Biol 2005, 1(4):e42. 
64 Vogelstein, Joshua T. "Q&A: What is the Open Connectome Project?." Neural Systems & Circuits 1.1 
(2011): 1-4. 
65 Wikipedia contributors. "Brain Activity Map Project." Wikipedia, The Free Encyclopedia. Wikipedia, The 
Free Encyclopedia, 28 Feb. 2013. Web. 28 Feb. 2013. 


